
TaOPT: Tool-Agnostic Optimization of Parallelized
Automated Mobile UI Testing

Dezhi Ran
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

dezhiran@pku.edu.cn

Zihe Song
University of Texas at Dallas

Richardson, USA
zihe.song@utdallas.edu

Wenyu Wang
University of Illinois at
Urbana-Champaign
Champaign, USA

i@wenyu.io

Wei Yang
University of Texas at Dallas

Richardson, USA
wei.yang@utdallas.edu

Tao Xie
Key Lab of HCST (PKU), MOE; SCS

Peking University
Beijing, China

taoxie@pku.edu.cn

Abstract
The emergence of modern testing clouds, equipped with a
vast array of real testing devices and high-fidelity emulators,
has significantly increased the need for parallel automated
mobile testing to optimally utilize the resources of testing
clouds. Parallel testing aligns perfectly with the character-
istic of rapid iteration cycles for mobile app development,
where testing time is limited. While numerous tools have
been proposed for optimizing the testing effectiveness on a
single testing device, it remains an open problem to optimize
the parallelization of automated mobile UI testing in terms of
resource and time utilization. To optimize the parallelization
of automated mobile UI testing, in this paper, we propose
TaOPT, a fully automated, tool-agnostic approach, which
improves the parallelization effectiveness of any given test-
ing tool without modifying the tool’s internal workflow. In
particular, TaOPT conducts online analysis to infer loosely
coupled UI subspaces in the App Under Test (AUT). TaOPT
then manages access to these subspaces across various test-
ing devices, guiding automated UI testing toward distinct
subspaces on different devices without knowing the test-
ing tool’s internal workflow. We apply TaOPT on 18 highly
popular mobile apps with three state-of-the-art automated
UI testing tools for Android. Evaluation results show that
TaOPT helps the tools reach comparable code coverage us-
ing 60% less testing duration and 62% less machine time than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/2025/03. . . $15.00
https://doi.org/10.1145/3676641.3716282

the baseline on average. In addition, TaOPT consistently en-
hances automated UI testing tools to detect 1.2 to 2.1 times
more unique crashes given the same testing resources.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; • Theory of computation
→ Dynamic graph algorithms.

Keywords: UI Testing, Mobile Testing, Parallel Testing, An-
droid, Parallelization, Graph Partition, Online Algorithm
ACM Reference Format:
Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie. 2025.
TaOPT: Tool-Agnostic Optimization of Parallelized Automated
Mobile UI Testing . In Proceedings of the 30th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2 (ASPLOS ’25), March 30-April 3,

2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3676641.3716282

1 Introduction
Given the importance of quality assurance for mobile apps,
automated User Interface (UI) testing [1, 4, 14, 15, 21, 27, 36,
40–42, 47, 53, 60, 63, 64, 66, 69, 70, 78] has been developed
to automatically generate and execute test inputs for Apps
Under Test (AUTs). UI testing involves exploring an app’s
UI space, which encompasses all possible UI states, and the
transitions between them. The UI transitions, triggered by in-
teractions such as clicks or swipes, form a cohesive structure
known as the UI transition graph, representing how users
navigate through the app. While traditional efforts focus on
enhancing the coverage of AUTs’ UI spaces [69] and identi-
fying unique crashes on a single device, the advent of testing
clouds [31–33, 37, 48, 55], equipped with a wide range of real
devices and emulators, underscores the necessity of parallel
automated mobile testing (in short as parallelized testing) to
leverage these resources. Yet, the task of effectively paralleliz-
ing testing of an AUT across multiple devices on testing clouds
remains a significant challenge. In this context, a paralleliza-
tion strategy akin to those used in distributed and parallel

https://orcid.org/0000-0002-7916-255X
https://orcid.org/0009-0009-6651-1560
https://orcid.org/0000-0001-9821-3220
https://orcid.org/0000-0002-5338-7347
https://orcid.org/0000-0002-6731-216X
https://doi.org/10.1145/3676641.3716282
https://doi.org/10.1145/3676641.3716282

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

Random Test Generation

Testing
Instance

Testing
Instance

Testing
Instance

Test Coordinator

On-the-fly Trace Analyzer

Detected
Entrypoints

Allocate/
De-allocate

Dynamic
Entrypoint
Enforcement

(a) (b)

Figure 1. A conceptual illustration of parallelized testing
with a testing cloud. Parallelized testing is not coordinated
in (a) and coordinated by TaOPT in (b).

computing [6, 17, 34, 49, 61] is essential for coordinating
automated UI testing across various testing instances within
a testing cloud, as conceptually depicted in Figure 1, to align
with the rapid evolution of AUTs [37, 39] and the limited
testing timeframe [10]. Aiming to minimize overlapping ex-
plorations

1, task distribution in parallelization strategies for
mobile UI testing, i.e., dividing the app’s UI space into decou-
pled components or functionalities (e.g., login, browsing, or
checkout functionalities), is significantly more complex than
the static allocation of workloads in traditional distributed
or parallel computing [6, 17, 49, 61].
The complexity of parallelization for mobile UI testing

arises from the need for real-time dynamic task partitioning
due to the dynamic nature of UI spaces in two major aspects.
First, constructing UI space based on static app structure,
such as partitioning according to static analysis [35] or the
Activity component [10, 24], struggles with applicability
and accuracy in most of apps on App Market. The scale of
industrial apps [65] and widely adopted obfuscation tech-
niques [18] make existing static analysis approaches fail to
produce complete and accurate UI space structures. Second,
the UI space requires not just the structure of UI transitions
but also the probabilities associated with the transitions,
and the probabilities can vary significantly across different
testing tools, affecting the coupling among UI states. The
inconsistent transition probabilities for testing tools necessi-
tate their direct executions on the AUT to obtain UI space
information for effective parallelization (as shown in our
preliminary study in Section 3.3).
Despite the necessity of a dynamic parallelization strat-

egy, it is challenging yet critical to design such an effective
strategy. The main problem is that this strategy has to oper-
ate with only local information during exploration. To avoid

1Overlapping explorations refer to the common scenarios (suggested by our
preliminary study in Section 3.2) where separate testing instances redun-
dantly traverse identical functionalities, decreasing testing effectiveness.

redundant testing, dynamic parallelization needs to be initi-
ated before the AUT’s UI space has been fully constructed
and the global information of the entire UI space has been
known. However, if partitioning decisions rely on only local
information, they may result in flawed parallelization and
diminish the overall effectiveness of parallelized testing. We
show examples in Section 2, and our preliminary study in
Section 3.3 further confirms this point.

To address the preceding challenge, in this paper, we for-
mulate the problem of achieving effective parallelization
with local information as an online Min-Conductance Graph
Partitioning problem [11, 44] (Section 4.1). We prove that
accurate online graph partitioning within a reasonable time
frame (𝑂 (𝑛2 log𝑛)) is feasible when the subgraphs are Glob-
ally Sparse and Locally Dense (GS-LD) [68]. The key insight
is that exploring the graph will accumulate sufficient infor-
mation of each subgraph of vertices before jumping out of the
subgraph, making the local information about the subgraph
sufficient for effective parallelization (Section 4.2).

Meanwhile, our preliminary study reveals that the AUT’s
UI spaces usually consist of what we define as loosely cou-
pledUI subspaces, which are inherently GS-LD (Section 3.2).
These subspaces are groups of UI states where the explo-
ration by a UI testing tool rarely goes from one subspace
to another. This phenomenon is attributed to mobile apps’
design, which often contains multiple relatively independent
functionalities [30, 38]. Figure 2 shows an example of an
online shopping app. When exploring the account-logistics
functionality, the design of mobile apps tends to confine the
testing tool inside the account setting area, reducing tran-
sitions to other functionalities. By allocating each testing
instance to explore one subspace, the overlapping explo-
rations across testing instances are naturally minimized and
the tool’s behavior is preserved, achieving an effective paral-
lelization strategy (as the workflow of our approach shown
in Figure 4).

To make the preceding insights into a practical and gener-
ally applicable solution, we further propose TaOPT, a general
and automated approach for flexibly optimizing parallelized
testing of any given automated UI testing tool. Figure 4
presents the workflow of TaOPT. TaOPT monitors the UI
transitions (i.e., UI hierarchy changes along with the trigger-
ing UI actions) during the working of the tool, and analyzes
the UI transitions with an effective online algorithm (de-
scribed in Section 5.2) to identify UI subspaces. Once the UI
subspaces are identified, instead of modifying the testing tool
or AUT, TaOPT controls the entrypoints to the UI subspaces
with the Toller framework [64]. To satisfy different needs
of balancing testing duration and testing resources, TaOPT
supports two parallelization modes (duration-constrained
mode and resource-constrained mode).
We evaluate the effectiveness of TaOPT by experiment-

ing on three state-of-the-art/practice tools (Monkey [21],

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

SearchTabs

MainTabs

MainTabs

MainTabs

UserServiceList Setting

Setting

Profile

SelectList
ShopBag

WishList

GoodsDetail

Loosely
Coupled

Loosely
Coupled

Account Settings

UI screen Activity name

TransitionUI Subspace

Figure 2. Motivating example: UI transition graph of online
shopping app under automated UI exploration.

Ape [26], and WCTester [72, 78]) and 18 highly popular in-
dustrial apps used by recent work [64–66]. Evaluation results
show that TaOPT consistently and substantially improves
the parallelization effectiveness of all three testing tools,
saving 65.9%, 50.1%, and 65.9% testing resources for Mon-
key, Ape, and WCTester to reach the same testing effective-
ness, respectively. When given the same testing resources,
TaOPT consistently improves the testing effectiveness of
the three testing tools, covering 14.6% more methods and
detecting 1.64× unique crashes on average. TaOPT helps
reduce overlapping explorations (measured by abstracted
UI screens [60]) by 68.9% on average and by 90.1% for the
most advanced tool Ape, while preserving the three testing
tools’ behavior by covering more than 95% of the methods
that the three testing tools can cover without TaOPT. These
results indicate TaOPT’s high value to generally improve
the parallelization effectiveness.

In summary, this paper makes the following main contri-
butions:
• A formulation of loosely coupled UI subspaces with theo-
retical guarantees to improve parallelized testing.
• An automated approach named TaOPT [51] to optimize
the parallelization of any automated UI testing tool.
• Extensive evaluations of TaOPT, demonstrating general-
ization and effectiveness to improve parallelized testing.

2 Motivating Example
In this section, we motivate loosely coupled UI subspaces
with a real-world example. Figure 2 shows a UI transition
graph of a popular online shopping app collected from au-
tomated UI exploration. Each circle shows a UI screen that
users or testing tools can see and interact with, while each
edge indicates a potential transition. The app’s main shop-
ping functionalities, indicated by the top right solid-line area,
enable users to browse products and make purchases. Mean-
while, users can manage their accounts on a separate set of
screens, enclosed by the bottom left solid line. As shown by
the graph, there is an apparent disconnection between the
screens of these two sets of functionalities, suggesting that

they are not highly related. It is desirable to parallelly and
separately explore these two sets of functionalities for the
efficiency of automated UI testing, achievable by partitioning
the app UIs into two subspaces and avoiding overlapping
explorations.

To partition the app UIs based on functionalities, a straight-
forward strategy is to leverage UI-related code units, such as
Android activities [10]. This strategy will significantly limit
the context of explorations in the given example: as shown in
Figure 2, the main shopping functionalities are implemented
using several different activities, such as ShopBagActivity
and GoodsDetailActivity. If we explore these activities sepa-
rately, we will not be able to cover core functionalities such
as adding goods to the shopping bag and checking out. Con-
sequently, this partitioning strategy will substantially limit
the effectiveness of parallelized testing.
To tackle the preceding limitations, TaOPT performs on-

line dynamic analysis onAUTUI transitions. Initially, the test
generation tool explores the app freely on each device while
TaOPT keeps monitoring the behavior. After the tool has
explored certain functionalities (e.g., Shopping) non-trivially
by frequently transitioning among the corresponding activ-
ities for sufficient amount of time on one device, TaOPT
reports that a loosely coupled UI subspace is found. The tool
will then no longer be able to enter these functionalities by
UI actions on other devices; for example, the button lead-
ing to SearchTabsActivity (as indicated by the star) will be
disabled on the main screen. Consequently, the tool can fo-
cus on testing the rest of functionalities (such as Account
Settings) on other devices.

3 Preliminary Study
In this section, we conduct a preliminary study of the ne-
cessities and opportunities to improve parallelized testing
with general parallelization strategies. First, given the fact
that most automated UI testing tools [21, 26, 72, 78] are ran-
domized, we first study whether automated UI testing can
be effectively parallelized by the intrinsic randomness when
using different random seeds. Second, we apply a simple
activity-based parallelization strategy to a testing tool to
study its general parallelization effectiveness for different
exploration strategies. In summary, our study aims to answer
the following research questions:

• RQ1: How effective is the intrinsic randomness of
testing tools for parallelizing automated UI testing?
• RQ2: How general is the activity-based parallelization
strategy for parallelizing an automated UI testing tool?

3.1 Study Setup
Baseline parallelized testing setting.We conduct paral-
lelized testing by running 𝑛 = 5 testing instances simulta-
neously for 𝑙𝑝 = 1 hour in wall-clock time. For each testing
instance, we simply let the test generation tool explore the

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

AUT for 𝑙𝑝 = 1 hour without interruption, interference or
coordination across testing instances. We use different ran-
dom seeds for different testing instances to maximize the
randomness across different testing instances with the hope
of reducing overlapped exploration across different testing
instances.
Parallelization effectiveness metrics.We use the overlap
of methods covered and UI subspaces covered by different
testing instances as the parallelization effectiveness metrics.
Measuring overlaps of covered methods. We use Jaccard

similarity [54] to measure the overlap of method coverage
achieved by two testing instances. Given two sets of cov-
ered methods 𝐴 and 𝐵 by two testing instances, the Jaccard
similarity between 𝐴 and 𝐵 is Jaccard(𝐴, 𝐵) = ∥𝐴∩𝐵 ∥

∥𝐴∪𝐵 ∥ . For
parallelized testing consisting of 𝑛 testing instances, we cal-
culate the Average Jaccard Similarity (AJS) across all pairs of
covered method set by two different testing instances with
the following equation:

AJS =
1

𝐶 (𝑛, 2)
∑︁
𝐴≠𝐵

Jaccard(𝐴, 𝐵) (1)

where 𝐶2
𝑛 is the number of combinations of 𝑛 items taken 2

at a time, and 𝐴, 𝐵 are two covered method sets achieved by
two different testing instances.

Measuring overlaps of UI subspace exploration. In addition
to measuring the coverage overlap, we also measure the
number of overlapped UI subspaces covered by different
testing instances. We apply an offline UI subspace partition
algorithm (based on the algorithm introduced in Section 5.2)
on the traces and count each UI subspace’s occurrences in
different testing instances. The algorithm segments regions
conservatively, requiring both low inter-region transition
probabilities and high internal cohesion before partition-
ing, ensuring that identified subspaces reflect genuine UI
independence and supporting the study validity.

The setup of the testing platform, subject apps, and auto-
mated UI testing tools is the same as our evaluation setup
(Section 6.1).

3.2 RQ1: Parallelization via Intrinsic Randomness
Prevalent and increasing overlap of covered methods.
Figure 3 presents the overlapping explorations measured by
overlaps of covered methods by different testing instances,
fromwhich we have two observations. First, all automated UI
testing tools studied suffer from the overlapping explorations
and the most advanced tool, Ape, suffers the most from
overlapping explorations, indicating the general need for a
parallelization strategy for any automated UI testing tool.
Second, the intrinsic randomness of testing tools cannot
effectively parallelize automated UI testing to address the
overlapping explorations. While the covered methods of
different testing instances at the beginning can be divergent
due to the randomness of tools, the overlap quickly increases

0 500 1000 1500 2000 2500 3000 3500
Testing Duration (s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ja
cc

ar
d

Si
m

ila
ri

ty

Monkey
Ape
WCTester

Figure 3. Overlaps of methods covered by different testing
instances in non-coordinated (baseline) parallelized testing.

with parallelized testing. At the end of the parallelized testing,
the Jaccard similarity of covered methods by Ape’s testing
instances reaches 0.84. Supposing that two testing instances
cover 100 methods, respectively, 91 methods are covered by
both testing instances, leaving the second testing instance
increase only 9 newly covered methods and wasting 91%
testing resources due to overlapping explorations.
Prevalent overlap of UI subspace exploration. Table 1
presents the results of UI subspace overlap across different
testing instances. “Overlap freq.” refers to the overlapping
frequency, quantifying the number of testing instances (out
of five) that explore the same UI subspace during parallel test-
ing. Among the identified 209 UI subspaces, 202 UI subspaces
(97% of all UI subspaces) are explored by more than one test-
ing instance, and 76 UI subspaces (36% of all UI subspaces)
are explored by all testing instances. Consequently, without
coordination, different testing instances tend to repetitively
explore the same UI subspace, resulting in overlapping ex-
plorations and decreasing the effectiveness of parallelized
testing.
Answer to RQ1: The prevalent overlapped exploration
decreases the parallelization effectiveness, not addressed
by the intrinsic randomness of testing tools.

3.3 RQ2: Activity-based Parallelization Strategy
To investigate the applicability of simple activity-based par-
allelization implemented in ParaAim [10], we implement
the parallelization strategy with the WCTester testing tool.
Since the original paper of ParaAim [10] claims the difficulty
of designing a parallelization strategy generally applicable
to any testing tool, we choose to adapt WCTester whose
exploration strategy is also activity-based, being the most
similar to the parallelization strategy.
Poor generalization of activity-based parallelization.
Table 2 presents the results of method coverage achieved
by WCTester under different parallelization settings. For
each parallelized testing setting, the covered methods are

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Overlaps of UI subspace exploration.

Overlap freq. 1/5 2/5 3/5 4/5 5/5
of subspaces 7 (3%) 9 (4%) 57 (27%) 60 (29%) 76 (36%)

Table 2.Method coverage of WCTester under
different parallelization settings.

App Name Baseline Parallel Rel. Improve.
AbsWorkout 9483 7679 -19.0 %
AccuWeather 20692 20306 -1.9 %
AutoScout24 38653 13758 -64.4 %
Merriam-Webster 10398 7936 -23.7 %
Duolingo 12852 12789 -0.5 %
Filters For Selfie 1145 2559 +123.5 %
GoodRx 15841 6171 -61.0 %
Google Chrome 11329 9307 -17.8 %
Google Translate 11553 5030 -56.5 %
WEBTOON 25139 13860 -44.9 %
Marvel Comics 6565 1115 -83.0 %
Ms Word 12928 6590 -49.0 %
Quizlet 39675 31062 -21.7 %
Sketch 8061 4149 -48.5 %
TripAdvisor 27743 16356 -41.0 %
Trivago 33043 20275 -38.6 %
UC Browser 23813 19690 -17.3 %
Zedge 63574 67569 +6.3 %
Average 20693 14788 -28.5%

calculated by accumulating all unique methods covered by
different testing instances. If one method is covered by more
than one testing instance, the method is counted only once.
From Table 2, it is surprising that the activity-based par-

allelization strategy generally reduces the testing effective-
ness on 89% apps, achieving 28.5% method coverage drop
on average compared to baseline performance (i.e., running
testing instances without any coordination) with the same
testing resources. A major reason for the effectiveness drop
is that WCTester prioritizes the UI actions that trigger Ac-
tivity transitions. Considering that WCTester has a quite
similar exploration strategy to the parallelization strategy,
this phenomenon demonstrates the poor generalization of
the activity-based parallelization strategy. In summary, with
the fast development of exploration strategy [26, 47, 53, 60],
it is necessary to design a general parallelization strategy
applicable to any testing tool.
Answer to RQ2: Existing parallelization strategies cannot
be generalized to parallelize different automated UI test-
ing tools. A generally applicable parallelization strategy
remains an unresolved challenge.

4 Problem Formulation
In this section, we formalize and prove our intuition of
loosely coupled UI subspaces with graph theory.

4.1 Parallelizing Automated UI Testing as
Min-Conductance Graph Partitioning

We first formalize the design of parallelization strategy as
an optimization problem of graph partitioning.
Automated UI testing can be modeled as a random walk-

ing process on a stochastic directed graph G = (V, E,P),
whereV denotes UI state set, E denotes UI action set trig-
gering transitions between UI states, and P : E → [0, 1]
denotes the probabilistic transition function defining the
likelihood of selecting UI actions in E at each UI state by the
test generation tool.
In parallelized automated UI testing, 𝑁 ≥ 2 testing in-

stances are executed on G, each covering a subgraph G𝑖 ⊂ G.
A parallelization strategy S represents a particular combi-
nation of 𝑁 subgraphs. These subgraphs of differing testing
instances exhibit overlaps, i.e., overlapping explorations. The
goal of parallelized automated UI testing is to minimize these
overlapping explorations (i.e., G𝑖 ∩ G𝑗 = ∅). Thus, design-
ing a parallelization strategy can be reduced to optimizing a
graph partitioning problem [28], where each graph partition-
ing solution corresponds to a parallelization coordination
solution.

An ideal partitioning should preserve the behavior of the
test generation tool on the AUT. Partitioning the graph re-
moves a set of edges (denoted as 𝑐𝑢𝑡 (𝑠)) to yield 𝐾 disjointed
subgraphs, and the probability sum of edges in 𝑐𝑢𝑡 (𝑠) should
be minimized. This formulated optimization problem closely
aligns with the Minimum Conductance Graph Partitioning
Problem [11, 44] (shortened to MC-GPP), a widely studied
and known NP-hard problem [28, 57]. In our setting where
the graph is weighted and directed, we extend the orig-
inal MC-GPP definition. The conductance from G1 to G2,
𝜙 (G1,G2), is then defined as follows:

𝜙 (G1,G2) =
∑

𝑖∈G1, 𝑗∈G2 𝑝 (𝑖, 𝑗)
min{|𝑣𝑜𝑙 (G1) |, |𝑣𝑜𝑙 (G2) |}

(2)

where a subgraph’s volume 𝑣𝑜𝑙 (G𝑥) =
∑

𝑖∈G𝑥 , 𝑗∉G𝑥 𝑝 (𝑗, 𝑖)−
𝑝 (𝑖, 𝑗) + 2 × ∑

𝑖∈G𝑥 , 𝑗∈G𝑥 𝑝 (𝑖, 𝑗). Intuitively, 𝜙 (G1,G2) repre-
sents the tool’s transition probability from G1 to G2. De-
signing an optimal parallelization strategy is equivalent to
optimize the following target:

MC-GPP: G∗ = argmin
𝑠∈Ω

max
G𝑖 ,G𝑗 ∈𝑠

𝜙 (G𝑖 ,G𝑗) (3)

Here, Ω = 𝑠 = (G1,G2, ..,G𝑘) represents the space of all
possible k-way partitions of G.
While minimizing the conductance between two UI sub-

spaces, two possible scenarios arise: (1) 𝜙 (G1,G2) ≈ 0 and
𝜙 (G2,G1) ≈ 0: the two UI subspaces scarcely interact. As
demonstrated in our motivating example in Section 2, the
main shopping functionality and the account settings func-
tionality of the online shopping app in Figure 2 are con-
nected solely through the Account Tab. (2) 𝜙 (G1,G2) ≫ 0
and 𝜙 (G2,G1) ≈ 0: the UI subspace G1 can easily transition

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

to G2 but the reverse is infrequent. Both cases are referred
to as loosely coupled UI subspaces.

4.2 Exploiting Local Density of Loosely Coupled UI
Subspaces for Online Partitioning

Based on the preceding formulation, we further address the
challenge of global parallelization with local information by
exploiting the Global Sparsity and Local Density (GS-LD)
property of G, the graph representation of the AUT’s UI
subspace. Generally speaking, mobile apps are component-
based software, comprising multiple functionalities that are
relatively independent [30, 38], and UI states implementing
a specific functionality are tightly interconnected. Given this
property, we prove that parallelizationwith local information
can yield satisfactory results.

Theorem 1. Let G1 and G2 be 𝑛-complete graphs (i.e., com-

plete graph with 𝑛 vertices) connected by an edge 𝑐 . Assume

that the probability of selecting each edge is equal to 1/𝑛, and
the probability of selecting edge 𝑐 is far less than 1/𝑛. Given
𝑁 ≥ 𝑂 (𝑛2 log𝑛), the graph conductance between G1 and G2 is
expected to be statistically smaller than the graph conductance

inside G1.

Proof Sketch. The central idea is that every edge inside the
n-complete subgraph has probability 1

𝑛
from a given vertex,

while the cross edge linking the two subgraphs has a much
smaller probability 1

𝛼𝑛
, with 𝛼 far greater than 1. By sampling

the edges sufficiently many times (on the order of 𝑛2 log𝑛),
standard Chernoff/Hoeffding bounds [13] guarantee that the
observed frequency of any internal edge stays well above
that of the rarer cross edge. As a result, the online exploration
discovers that internal edges appear much more frequently,
leading it to identify the correct separation between the two
subgraphs with high probability.

Proof of Theorem 1. Within 𝐺1, each vertex 𝑣𝑖 has 𝑛 − 1 in-
cident edges. For each internal edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗), we denote
its true probability 𝑝𝑒 = 1

𝑛
when sampling from 𝑣𝑖 . For the

cross edge 𝑐 = (𝑣𝑖 , 𝑢 𝑗) between 𝐺1 and 𝐺2, by assumption
that its probability is 𝑝𝑐 = 1

𝛼𝑛
with 𝛼 ≫ 1. Let 𝑓 𝑟𝑒𝑞(𝑒) be the

empirical frequency of choosing 𝑒 over 𝑁 steps (restricted
to the times when the traversal starts from vertex 𝑣𝑖).

Focus on a single vertex 𝑣𝑖 in𝐺1. Over the course of𝑁 total
samples, let𝑚𝑖 be the number of times that we start a step
from 𝑣𝑖 . Then 𝑓 𝑟𝑒𝑞(𝑒) for edges 𝑒 emanating from 𝑣𝑖 can be
viewed as 𝑓 𝑟𝑒𝑞(𝑒) = 𝑋𝑒

𝑚𝑖
, where 𝑋𝑒 ∼ Binomial(𝑚𝑖 , 𝑝𝑒) and

𝐸 [𝑋𝑒] =𝑚𝑖𝑝𝑒 . Based on standard Chernoff inequality [13],
if we have 𝑋 ∼ Binomial(𝑚𝑖 , 𝑝), then for 0 < 𝛿 < 1:

Pr[𝑋 ≤ (1 − 𝛿)𝑚𝑖𝑝] ≤ exp(−𝛿
2

2
𝑚𝑖𝑝).

Hence for each edge 𝑒 in 𝐺1, we have high-probability
bounds around 𝑚𝑖

𝑛
.

Our main goal is to show

(min
𝑒∈𝐸1

𝑓 𝑟𝑒𝑞(𝑒)) > 𝑓 𝑟𝑒𝑞(𝑐),

with high probability, where 𝐸1 denotes the set of all in-
ternal edges in 𝐺1.
Lower bound for internal edges. Since there are at most

𝑛 edges leaving each vertex 𝑣𝑖 ∈ 𝐺1, we can union-bound
over those edges to get (with high probability) a uniform
lower bound on the frequency at each vertex. Then union-
bound over all 𝑛 vertices in 𝐺1. Provided that𝑚𝑖 ≈ 𝑁 /𝑛 is
sufficiently large (on the order of Ω(𝑛 log𝑛)), the Chernoff
bound shows that each internal edge 𝑒 satisfies 𝑓 𝑟𝑒𝑞(𝑒) ≥
1
𝑛
− 𝜀 for some small 𝜀 > 0 with high probability, uniformly

over all edges 𝑒 ∈ 𝐸1.
Upper bound for cross edge 𝑐 . Similarly, for the cross edge

𝑐 , each time when we start from 𝑣𝑖 ∈ 𝐺1, the probability
is 𝑝𝑐 = 1

𝛼𝑛
with 𝛼 ≫ 1. If 𝑚𝑖 is again ≈ 𝑁

𝑛
, then 𝑋𝑐 ∼

Binomial(𝑚𝑖 ,
1
𝛼𝑛
) implies 𝑓 𝑟𝑒𝑞(𝑐) = 𝑋𝑐

𝑚𝑖
≈ 1

𝛼𝑛
up to small

fluctuations. For large 𝛼 , we have 1
𝛼𝑛
≪ 1

𝑛
.

Based on the preceding information, choosing𝑁 ≥ 𝐶𝑛2 log𝑛
(for some sufficiently large 𝐶) ensures with high probability
that

min
𝑒∈𝐸1

𝑓 𝑟𝑒𝑞(𝑒)︸ ︷︷ ︸
≳ 1

𝑛

> 𝑓 𝑟𝑒𝑞(𝑐)︸ ︷︷ ︸
≲ 1

𝛼𝑛

.

Hence, the estimated conductance between 𝐺1 and 𝐺2
(proportional to 𝑓 𝑟𝑒𝑞(𝑐)) remains significantly smaller than
the internal conductance in 𝐺1.
By standard arguments linking edge-frequency estima-

tions to partitioning conductance (i.e., if a cross edge is
observed to be much rarer than internal edges, the par-
tition {𝐺1,𝐺2} naturally follows), we conclude that after
𝑁 ≥ 𝐶𝑛2 log𝑛 steps of online sampling, with high probabil-

ity the subspace partition𝐺1 vs.𝐺2 is correctly identified by
comparing internal vs. cross-edge frequencies. Since local
sampling has revealed that cross-edge frequencies are sig-
nificantly lower, the system recognizes that 𝐺1 and𝐺2 form
two distinct UI subspaces, completing the proof. □

Theorem 1 provides three key theoretical insights for im-
plementing TaOPT. First, it proves that effective online par-
titioning is theoretically tractable, validating our dynamic
partitioning approach during testing. Second, it shows that
least frequently traversed edges serve as natural subspace
boundaries, enabling a principled implementation for iden-
tifying subspace entry points. Third, it reveals that parti-
tion accuracy improves with longer exploration time but
increases overlap-explore risk, allowing us to balance these
factors through hyperparameters.

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

5 The TaOPT Approach
Figure 1(b) depicts the overview of TaOPT’s architecture,
which consists of two main modules. The trace analyzer (de-
tailed in Section 5.2) monitors UI transition traces (i.e., logs
of UI screen changes caused by the testing tool) and identi-
fies loosely coupled UI subspaces, while the test coordinator
(detailed in Section 5.3) schedules UI subspaces among test-
ing instances (i.e., mobile devices/emulators with the testing
tool running on them) based on the results of UI subspace
identification.
The initial input of TaOPT is a set of mobile devices or

emulators, an App Under Test (AUT), and an automated UI
testing tool. During the testing process, TaOPT also takes
the UI transition traces as inputs. The output of TaOPT is
a list of UI subspaces of the given testing tool on the AUT,
and a schedule of dedicating each UI subspace to one testing
instance. The outputs of TaOPT are dynamically generated
and immediately used during the testing process, explained
in the workflow section (Section 5.1).

5.1 Workflow of TaOPT
Figure 4 presents TaOPT’s workflow. Depending on the cho-
sen mode - duration-constrained or resource-constrained -
the coordinator initiates one or more testing instances (step
0). At the beginning, TaOPT has no information about the
AUT’s UI space and lets the testing tool explore the AUT on
each testing instance (step 1).

During the tool exploration, TaOPT monitors the UI tran-
sition (step 2) on each testing instance and analyzes the
UI transition traces (step 3) with the online trace analysis
algorithm (detailed in Section 5.2). Upon identification of a
new UI subspace (step 4), TaOPT dedicates the detected
UI subspace to a specific testing instance (step 5) while
barring other testing instances from exploring it (step 5).
For example, in the third phase of Figure 4, UI subspace

X (colored in red) is dedicated to testing instance A, and
UI subspace Y (colored in green) is dedicated to testing in-
stance B. The subsequent exploration in testing instance A
cannot access UI subspace Y anymore, and the subsequent
exploration in testing instance B cannot access UI subspace
X anymore. TaOPT also allocates a new testing instance C
(step 6) if there are available mobile devices/emulators. The
newly allocated testing instance C cannot access either UI
subspace X or Y, but can access other parts of the UI space.
In the subsequent testing process, the three testing in-

stances explore different parts of the UI space (step 7) with
reduced overlapping explorations. TaOPT repeats steps 1
to 7 until the end of testing.

5.2 UI Subspace Identification with a Trace Analyzer
To make TaOPT generally applicable to any UI test genera-
tion tool withoutmodifying tools’ internal logic ormodifying
the AUT, we implement a trace analyzer with the Toller

framework [64]. Toller monitors and reports immediately
any UI action along with the context AUT UI without modi-
fying the test generation tool or the AUT. The logs of Toller
form UI transition traces, defined as a sequence of UI screens
interspersed with corresponding UI actions.
Algorithm 1 presents the online trace analysis algorithm

FindSpace to identify the entrypoint to a UI subspace based
on the UI transition traces. FindSpace takes a UI transition
trace 𝑆 and a parameter 𝑙min as inputs. FindSpace examines
each UI screen 𝑝 in 𝑆 to determine whether the exploration
following screen 𝑝 constitutes a loosely coupled UI subspace
relative to the UI space preceding screen 𝑝 . As can be seen,
FindSpace targets both higher-level irreversible transition of
UI exploration space and lower-level difficulties of exercising
a specific functionality. Let 𝑆 [0 : 𝑝] and 𝑆 [𝑝 : 𝑁] represent
the sets of UI screens explored before and after screen 𝑝 ,
respectively. FindSpace calculates a score (Line 11), signi-
fying the degree of UI screen overlap or mutual transition
between 𝑆 [0 : 𝑝] and 𝑆 [𝑝 : 𝑁]. For each screen 𝑠 in 𝑆 [0 : 𝑝],
the algorithm counts its appearances in 𝑆 [𝑝 : 𝑁] (Line 7),
abstracting each screen to avoid excessive counts of similar
screens. This abstraction removes text associated with UI
elements [5, 60]. The CountIn function (Line 7) calculates
the tree similarity [66] of the two abstracted UI hierarchies
to determine the times of the appearances of 𝑠 in 𝑆 [0 : 𝑝].
The score is then normalized (Lines 9- 11) to find the screen
𝑝𝑜𝑢𝑡 with the minimum score, denoting 𝑆 [𝑝𝑜𝑢𝑡 : 𝑁] as a UI
subspace with its entrypoint at 𝑝𝑜𝑢𝑡 .

The parameter 𝑙min controls the minimum time to explore
𝑆 [𝑝𝑜𝑢𝑡 : 𝑁]. On the one hand, the larger 𝑙min, the more thor-
ough 𝑆 [𝑝𝑜𝑢𝑡 : 𝑁] is explored, and the trace analysis has
more information about the potential UI subspace. On the
other hand, the larger 𝑙min means that a longer time period is
needed before a UI subspace can be identified, likely missing
opportunities for effective parallelization. To satisfy different
needs of balancing testing duration and testing resources, we
use two sets of empirically determined parameters: 𝑙𝑙𝑜𝑛𝑔min =

5 minutes for the resource-constrained mode, and 𝑙𝑠ℎ𝑜𝑟𝑡min = 1
minute for the duration-constrained mode. Subspaces identi-
fied using 𝑙𝑙𝑜𝑛𝑔min are confidently accepted at once, while
those identified with 𝑙𝑠ℎ𝑜𝑟𝑡min are accepted only when re-
ported by at least two testing instances.

5.3 Parallelization with a Test Coordinator
To satisfy different needs of balancing testing duration and
testing resources, TaOPT supports two parallelizationmodes,
namely the duration-constrained and resource-constrained
modes. The duration-constrained mode requires two user-
specified parameters: the number of testing instances to
run concurrently 𝑑max as well as the test time budget 𝑙𝑝 per
testing instance. The test coordinator maintains exactly 𝑑max
concurrent testing instances throughout the testing period
𝑙𝑝 , immediately launching a new instance whenever one

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

Wall-Clock Time T1

Instance A’s View

Explored
UI Space

TaOPT

Instance B’s View

2 UI Transition
Monitoring

2 UI Transition
Monitoring

Wall-Clock Time T1

Instance A’s View

Wall-Clock Time T0

TaOPT

1 Tool Exploration

1
Tool Exploration

1
Tool Exploration

0
Testing

Instance
Allocation

3 Trace Analysis

UI Subspace Identification

5 UI Subspace
Manipulation

4

Blocked UI subspaces

Blocked UI actions

7 Tool Exploration inside UI subspace
Wall-Clock Time T2

Instance A’s ViewInstance B’s View
Instance A’s View Instance B’s View

TaOPT

Unexplored
UI Space

5 UI Subspace Manipulation

5

Blocked UI actions

Instance C’s View

6
New Testing
Instance Allocation

Instance C’s ViewInstance B’s View

TaOPT
2

22

…

States in UI subspace X
States in UI subspace Y
Other

Solid circle: explored UI states
Dotted circle: unexplored UI states

Dash-dot circle: blocked UI states

Solid arrow: visited UI action
Dotted arrow: unvisited UI action
Dash-dot arrow: blocked UI action

…0
3 4

0.5 0.49

0.5

0.01

0.5

0.5
(Partial) Probabilistic
UI Transition Graph

…
UI Subspaces and Schedules 0.01

block UI action leading
to the subspace

((Dedicated to
Instance A

Blocked
on B&C

((Dedicated to
Instance B

Blocked
on A&C

UI Subspaces and Schedules

(Empty)

Testing
Instance

Allocation

Figure 4. The workflow of TaOPT. Steps with the same numbers represent the same operation.

Algorithm 1: FindSpace: Identifying loosely cou-
pled UI subspace via trace analysis.
Input: List of UI screens 𝑆 along with their timestamps 𝑇 ,

the threshold after partition 𝑙min
Output: Indexes of entrypoints of the UI subspace, or nil

1 𝑁, 𝑝out, 𝑠𝑐𝑜𝑟𝑒min ← |𝑆 |, 𝑛𝑖𝑙, 1
2 𝑝max ← max{𝑝 : 𝑝 ∈ [0, 𝑁 − 1] ∧𝑇 [𝑝] ≤ 𝑇 [𝑁 − 1] − 𝑙min}
3 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← |Set(𝑆 [𝑝max + 1 : 𝑁]) |
4 foreach 𝑝 ∈ 1 to 𝑝max do
5 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒 ← 0
6 foreach 𝑠 ∈ Set(𝑆 [0 : 𝑝]) do
7 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒 ← 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒 + CountIn(𝑠, 𝑆 [𝑝 :

𝑁])
8 end

9 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑐𝑜𝑟𝑒 ← 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑖𝑧𝑒
𝑁−𝑝

10 𝑝𝑢𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 ← Sigmoid(|Set(𝑆 [𝑝 :𝑁]) |
𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 − 1)

11 𝑠𝑐𝑜𝑟𝑒 ← 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑠𝑐𝑜𝑟𝑒 + 2 ∗ 𝑝𝑢𝑟𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 − 1
12 if 𝑠𝑐𝑜𝑟𝑒 < 𝑠𝑐𝑜𝑟𝑒min then
13 𝑠𝑐𝑜𝑟𝑒min, 𝑝out ← 𝑠𝑐𝑜𝑟𝑒, 𝑝

14 end
15 end
16 return 𝑝out

is de-allocated. In contrast, the resource-constrained mode
requires only the total machine hour budget𝑇 . Starting with
a single testing instance, the number of concurrent instances
dynamically adjusts based on the number of detected UI
subspaces and the testing progress within each subspace.
During the testing (i.e., the testing tool’s exploration of

the AUT), UI subspaces and entrypoints can be identified by
the trace analyzer (detailed in Section 5.2). The test coordi-
nator dedicates each UI subspace to one testing instance and
manages testing instance allocation/de-allocation.
First, the test coordinator broadcasts UI subspace entry-

point information to all running testing instances. For the
testing instance that identifies a UI subspace, the test coor-
dinator grants access to both the entrypoint and the corre-
sponding UI subspace. For other testing instances, the test

coordinator blocks the entrypoint, i.e., blocking access to
the corresponding UI subspace. Specifically, TaOPT uses the
Toller framework [64] for screen update notifications. Upon
each screen update, TaOPT obtains a UI hierarchy, identifies
UI elements matching any blocked entrypoint, and instructs
Toller to disable these elements before the test generation
tool can interact with them.
Second, when any available mobile devices are not run-

ning and a new UI subspace 𝑋 is identified, the test coor-
dinator will allocate a new testing instance and block the
entrypoint to the UI subspace 𝑋 on the new testing instance.

Finally, the test coordinator monitors the testing progress
of testing instances. If one testing instance does not discover
new UI screens for 𝑙𝑠ℎ𝑜𝑟𝑡min = 1 minute, the test coordinator
will de-allocate the testing instance. After de-allocation, the
response varies by mode. In the duration-constrained mode,
a new testing instance is immediately allocated with all en-
trypoints to identified UI subspaces blocked. In the resource-
constrained mode, new testing instance allocation is deferred
until new UI subspaces are identified.

6 Evaluation
Our evaluation answers the following research questions:
• RQ3: How much testing duration can TaOPT reduce com-
pared with baselines?
• RQ4: How many testing resources (i.e., machine time of
all testing instances) can TaOPT reduce compared with
baselines?
• RQ5: Given the same testing resources or duration, how
much effectiveness can TaOPT improve (measured by code
coverage and unique crashes) compared with baselines?
• RQ6: How effectively can TaOPT reduce overlapping ex-
plorations and preserve the behavior of UI testing tools?

6.1 Evaluation Setup
Parallel run settings. We conduct parallel runs with three
settings: (1) baseline parallelization (i.e., parallelized test-
ing without coordination across testing instances, the same

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 3. Overview of used industrial apps.

App Name Version Category #Inst
AbsWorkout 4.2.0 Health & Fitness 10m+
AccuWeather 7.4.1-5 Weather 100m+
AutoScout24 9.8.6 Auto & Vehicles 10m+
Duolingo 3.75.1 Education 100m+
Filters For Selfie 1.0.0 Beauty 10m+
GoodRx 5.3.6 Medical 10m+
Google Chrome 65.0.3325 Communication 10b+
Google Translate 6.5.0 Books & Reference 1b+
Marvel Comics 3.10.3 Comics 10m+
Merriam-Webster 4.1.2 Books & Reference 10m+
Ms Word 16.0.15 Personal 1b+
Quizlet∗ 6.6.2 Education 10m+
Sketch 8.0.A.0.2 Art & Design 50m+
TripAdvisor∗ 25.6.1 Food & Drink 100m+
Trivago 4.9.4 Travel & Local 50m+
UC Browser 13.0.0.1288 Communication 1b+
WEBTOON∗ 2.4.3 Comics 100m+
Zedge 7.34.4 Personalization 100m+

Notes: “#Inst” denotes the approximate number of downloads.

Apps with asterisks (
∗
) after their names are the ones that

require a login to access most features.

setting as used in Section 3), (2) TaOPT with the resource-
constrainedmode, and (3)TaOPTwith the duration-constrained
mode.

For baseline parallelization and TaOPT with the duration-
constrained mode, we set the parallel testing time 𝑙𝑝 = 1
hour and the number of testing instances 𝑑max = 5. For each
baseline parallelization, we simply start𝑑max testing instances
at once and let the test generation tool explore the AUT for
𝑙𝑝 without interruption or interference.

ForTaOPTwith the resource-constrainedmode, we launch
one testing instance at start and allocate 𝑙𝑚 = 𝑙𝑝 × 𝑑max = 5
machine hours. There is no more than 𝑑max concurrent test-
ing instances at any time in the parallelized testing. The
parallelized testing is ended until all machine hours are used.
AutomatedUI testing tools.Three state-of-the-art/practice
Android UI testing tools are involved in our study: Mon-
key [21], WCTester [72, 78], and Ape [26]. Monkey [21]
is one of the most widely used tools in industrial settings,
and WCTester [72, 78] is a state-of-the-practice tool used
to test WeChat, a highly popular app with over one billion
monthly active users. Ape [26] is an advanced model-based
testing tool exhibiting superior effectiveness on industrial
apps [53, 64–66].
Subject apps. We conduct the evaluation on highly popular
industrial apps that are widely used for automated UI testing
evaluation [53, 64–66]. We obtain 18 apps that run properly
on our x64 Android emulators as presented in Table 3.
Test platform.All experiments are conducted on the official
Android x64 emulators running Android 6.0 on a server with
four AMD EPYC 7H12 64-Core Processors. Each emulator is
allocated with 4 dedicated CPU cores, 2 GB RAM, and 2 GB

Monkey Ape WCTester
0

20

40

60

80

100

Sa
ve

d
Ti

m
e

(%
)

Duration-Constrained Resource-Constrained

Figure 5. Statistics of testing duration saved by TaOPT.

Monkey Ape WCTester
0

20

40

60

80

100

Sa
ve

d
Re

so
ur

ce
 (

%
)

Duration-Constrained Resource-Constrained

Figure 6. Statistics of testing resources saved by TaOPT.

internal storage. Emulator data are stored on an in-memory
disk for minimal mutual influences caused by disk I/O bottle-
necks. Hardware graphics acceleration is also enabled with
two Nvidia GeForce RTX 3090 Graphics Cards to ensure the
responsiveness of emulators. We manually write auto-login
scripts for apps (with ‘*’ marks in Table 3) requiring a login
to access their main functionalities. Each of these scripts is
executed only once before the corresponding app starts to
be tested in each testing instance.
Coverage collection. We collect the method coverage as
a fine-grained code coverage metric achieved by each test-
ing instance, using the MiniTrace [25] tool from Ape. By
modifying DalvikVM/ART, the tool does not require app in-
strumentation, avoiding unexpected issues from modifying
industrial apps in our experiments.
Crash collection. We consider only crashes originating
from apps’ bytecode. Code locations in stack traces are used
to identify unique crashes [64–66]. We obtain stack traces
by monitoring Android Logcat [22] messages.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

Table 4. Statistics of cumulative code coverage.

App Name Baseline TaOPT (Duration) TaOPT (Resource)
Mon. Ape WCT. Mon. Ape WCT. Mon. Ape WCT.

AbsWorkout 7558 9421 9483 9363 (+23%) 11135 (+18%) 9979 (+5%) 8181 (+8%) 10046 (+6%) 9836 (+3%)
AccuWeather 13366 22916 20692 23020 (+72%) 24724 (+7%) 25066 (+21%) 22924 (+71%) 23239 (+1%) 24746 (+19%)
AutoScout24 31196 41629 38653 42368 (+35%) 43464 (+4%) 39061 (+1%) 43058 (+38%) 43434 (+4%) 39406 (+1%)
Merriam-Webster 6322 10180 10398 10444 (+65%) 11286 (+10%) 10494 (+0%) 10403 (+64%) 10663 (+4%) 10454 (+0%)
Duolingo 12952 16702 12852 15509 (+19%) 16811 (+0%) 15262 (+18%) 15440 (+19%) 16782 (+0%) 15534 (+20%)
Filters For Selfie 4611 2727 1145 4507 (-2%) 4446 (+63%) 2587 (+125%) 4806 (+4%) 4702 (+72%) 2575 (+124%)
GoodRx 16274 17751 15841 16158 (0%) 18817 (+6%) 16091 (+1%) 16363 (+0%) 17928 (+0%) 15085 (-4%)
Google Chrome 9874 12787 11329 12151 (+23%) 12835 (+0%) 12601 (+11%) 12034 (+21%) 13618 (+6%) 12268 (+8%)
Google Translate 8986 11074 11553 10510 (+16%) 11680 (+5%) 11088 (-4%) 10512 (+16%) 10743 (-2%) 10409 (-9%)
WEBTOON 26206 27673 25139 27153 (+3%) 28186 (+1%) 25885 (+2%) 27546 (+5%) 31135 (+12%) 27845 (+10%)
Marvel Comics 6650 5709 6565 7276 (+9%) 6703 (+17%) 6379 (-2%) 5961 (-10%) 6675 (+16%) 5137 (-21%)
Ms Word 13477 14291 12928 13970 (+3%) 14325 (+0%) 13837 (+7%) 13397 (0%) 14571 (+1%) 13290 (+2%)
Quizlet 43127 50559 39675 49624 (+15%) 52500 (+3%) 43099 (+8%) 49177 (+14%) 50828 (+0%) 46683 (+17%)
Sketch 7198 9730 8061 9528 (+32%) 9617 (-1%) 8401 (+4%) 9508 (+32%) 9676 (0%) 7532 (-6%)
TripAdvisor 22411 29496 27743 26669 (+18%) 31105 (+5%) 29569 (+6%) 24720 (+10%) 30317 (+2%) 27590 (0%)
Trivago 36919 20403 33043 40321 (+9%) 20426 (+0%) 34041 (+3%) 38863 (+5%) 40166 (+96%) 35041 (+6%)
UC Browser 26436 30938 23813 30624 (+15%) 32989 (+6%) 25662 (+7%) 28958 (+9%) 32407 (+4%) 26622 (+11%)
Zedge 62380 71475 63574 79476 (+27%) 85187 (+19%) 81322 (+27%) 64658 (+3%) 92585 (+29%) 75283 (+18%)
Average 19774 22525 20693 23815 24235 22801 22583 25528 22518
Average Δ - - - +21% (+20.4%) +9% (+7.6%) +13% (+10.2%) +17% (+14.2%) +14% (+13.3%) +11% (+8.8%)
Notes: Average Δ stands for the average improvement. Δ = (#TaOPT − #Baseline) ÷ #Baseline × 100% in the corresponding tool. Mon.

and WCT. represent Monkey and WCTester, respectively.

Table 5. Statistics of distinct crashes.

App Name Baseline TaOPT (Duration) TaOPT (Resource)
Mon. Ape WCT. Mon. Ape WCT. Mon. Ape WCT.

AbsWorkout 2 2 1 5 (+150%) 7 (+250%) 1 (0%) 4 (+100%) 4 (+100%) 2 (+100%)
AccuWeather 0 2 0 1 (+100%) 1 (-50%) 1 (+100%) 0 (0%) 2 (0%) 0 (0%)
AutoScout24 0 0 0 1 (+100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Merriam-Webster 0 1 1 2 (+200%) 1 (0%) 1 (0%) 2 (+200%) 4 (+300%) 0 (-100%)
Duolingo 0 1 0 0 (0%) 1 (0%) 1 (+100%) 0 (0%) 2 (+100%) 2 (+200%)
Filters For Selfie 1 0 0 0 (-100%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%)
GoodRx 1 2 1 2 (+100%) 0 (-100%) 0 (-100%) 1 (0%) 1 (-50%) 0 (-100%)
Google Chrome 0 0 0 0 (0%) 1 (+100%) 0 (0%) 0 (0%) 0 (0%) 1 (+100%)
Google Translate 1 3 2 8 (+700%) 2 (-33%) 0 (-100%) 6 (+500%) 10 (+233%) 5 (+150%)
WEBTOON 1 2 0 0 (-100%) 3 (+50%) 2 (+200%) 0 (-100%) 1 (-50%) 0 (0%)
Marvel Comics 2 2 0 2 (0%) 3 (+50%) 0 (0%) 2 (0%) 2 (0%) 0 (0%)
Ms Word 1 0 1 3 (+200%) 0 (0%) 0 (-100%) 1 (0%) 0 (0%) 0 (-100%)
Quizlet 5 1 0 3 (-40%) 3 (+200%) 0 (0%) 2 (-60%) 2 (+100%) 1 (+100%)
Sketch 0 1 0 2 (+200%) 0 (-100%) 0 (0%) 0 (0%) 0 (-100%) 0 (0%)
TripAdvisor 0 4 1 3 (+300%) 3 (-25%) 3 (+200%) 0 (0%) 2 (-50%) 0 (-100%)
Trivago 0 1 0 2 (+200%) 2 (+100%) 1 (+100%) 1 (+100%) 1 (0%) 0 (0%)
UC Browser 2 1 0 0 (-100%) 1 (0%) 0 (0%) 0 (-100%) 1 (0%) 0 (0%)
Zedge 1 2 1 3 (+200%) 3 (+50%) 1 (0%) 4 (+300%) 3 (+50%) 1 (0%)
Total 17 25 8 37 31 11 24 35 12
Average Δ - - - +117% (+118%) +27% (+24%) +22% (+38%) +52% (+41%) +35% (+14%) +13% (+50%)

Notes: ‘Δ = (#TaOPT − #Baseline) ÷ #Baseline × 100% for the corresponding tool. Average Δ stands for the average improvement.

Δ = (#TaOPT − #Baseline) ÷ #Baseline × 100% in the corresponding tool. Mon. and WCT. represent Monkey and WCTester, respectively.

6.2 RQ3. Reduction of needed testing duration
We investigate how much testing duration can be reduced by
TaOPT while maintaining the same test effectiveness com-
pared to baseline parallelization. Using cumulative code cov-
erage over time as our effectiveness metric, we calculate test-
ing duration reduction by identifying when TaOPT achieves
the same code coverage as baseline runs’ full-duration (1

hour) results. We then calculate unused testing duration re-
maining at this point and compute the reduction percentage
by dividing remaining testing duration by total allocated
testing duration.
Figure 5 presents the statistics of the testing duration

saved by TaOPT on different apps. TaOPT-conducted par-
allel runs use substantially less testing duration to achieve

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the same average code coverage with baseline runs, with
64.0%, 48%, 41.0% less testing duration on average needed by
Monkey, Ape, andWCTester in duration-constrained parallel
runs. While the resource-constrained mode of TaOPT is not
expected to save substantial testing duration, the resource-
constrained mode can still save testing duration on 12, 6, and
9 apps for Monkey, Ape, and WCTester, respectively.

In conclusion, TaOPT helps save substantial testing dura-
tion, being especially beneficial for testing tasks requiring
timely completion.

6.3 RQ4. Reduction of needed machine time
We investigate how many testing resources (measured in
machine time) can be reduced by TaOPT when reaching
the same test effectiveness as the baseline parallelization.
To calculate the reduction of needed machine time, we find
the remaining machine time not used by TaOPT-conducted
testing instances when they achieve the same code coverage
that is achieved by baseline runs using the total machine time
(i.e., 5 machine hours). By dividing the remaining machine
time by the total machine time, we obtain the reduction of
needed machine time.
Figure 6 presents the statistics of the testing resources

saved by TaOPT on different apps. We find that TaOPT-
conducted parallel runs use substantially less machine time
to achieve the same average code coverage with the baseline
parallelization runs, with 65.9%, 50.1%, 47.6% less, and 64.6%,
48.9%, 42.5% less machine time needed by Monkey, Ape, and
WCTester in resource-constrained and duration-constrained
parallel runs, respectively.

Notably, the duration-constrained mode achieves compa-
rable or sometimes better testing resource savings than the
resource-constrained mode. To better understand this obser-
vation, we conduct non-parallelization testing with single
testing instances of 𝑙𝑝 × 𝑑𝑚𝑎𝑥 = 5 hours, using the same
machine hours but without any parallelization. In the 5-hour
non-parallelization run, Monkey, Ape, and WCTester cover
19133, 22771, and 17851 methods, respectively. We find out
that baseline parallelization runs generally achieve compa-
rable or even higher method coverage (shown in Table 4)
compared to non-parallelization runs, despite overlapping
explorations. The results explain the substantial testing re-
source savings in the duration-constrainedmode and suggest
that dividing testing budget across multiple testing instances
can be more effective than single long-duration runs. TaOPT
further enhances this advantage by reducing overlapping
explorations.

In conclusion,TaOPT achieves substantial testing resource
savings, reducing testing resource costs by up to 65.9%. Given
the high costs of mobile testing resources (e.g., AWS Device
Farm’s rate of $0.17 per device minute for real devices [55]),
TaOPT’s efficiency improvements translate to significant
economic benefits for testers.

6.4 RQ5. Test effectiveness improvement
This RQ aims to find out that given the same quantity of
testing resources (i.e., machine time), whether TaOPT is
able to help testing tools achieve better test effectiveness
in terms of cumulative method coverage and numbers of
distinct crashes. For each parallel run, its cumulative method
coverage and distinct crashes are calculated as the union
of distinct methods covered and crashes triggered in each
testing instance, respectively.

Table 5 shows the statistics of distinct crashes and Table 4
shows the statistics of cumulative code coverage. As can be
seen, TaOPT-conducted parallel runs consistently achieve
higher code coverage and discover more unique crashes com-
pared with the baseline runs, covering 14.6% more methods
and detecting 1.64× unique crashes on average. To prevent
potential skew in the average metric caused by outliers, we
also present the percentage increase or decrease in code cov-
erage and crashes detected for each app compared to the
baseline. Most cases (81.5%) demonstrate positive growth
in cumulative code coverage compared to the baseline. Sim-
ilarly, for crash detection, both modes consistently detect
a higher or equal number of crashes in most cases (78.7%),
demonstrating TaOPT’s effectiveness across different apps.

To validate whether the improvement resulted by substan-
tially changing the testing tool’s behavior, we then examine
how TaOPT changes the behavior of the test generation tool
by examining the method coverage overlap between baseline
parallelization runs and TaOPT-enhanced runs. We calculate
the Jaccard similarity [54] between the sets of methods cov-
ered by baseline parallelization and TaOPT-enhanced runs,
and the proportion of methods covered by baseline paral-
lelization but not by TaOPT-enhanced runs. Specifically, the
Jaccard similarity between the duration-constrained mode of
TaOPT and baseline runs are 0.77, 0.86, and 0.85 for Monkey,
Ape, and WCTester, respectively. In other words, 3.7%, 3.4%,
and 3.3% methods covered by baseline parallelization runs
are not covered by the duration-constrained mode of TaOPT
for Monkey, Ape, and WCTester, respectively. the Jaccard
similarity between the resource-constrained mode of TaOPT
and baseline parallelization runs is 0.77, 0.81, and 0.83 for
Monkey, Ape, and WCTester, respectively. In other words,
5.0%, 5.1%, and 5.3% methods covered by baseline paralleliza-
tion runs are not covered by the resource-constrained mode
of TaOPT for Monkey, Ape, and WCTester, respectively. In
conclusion, TaOPT consistently improves the parallelization
effectiveness of three testing tools without compromising
the effectiveness of the original testing tools, demonstrating
the generalization of TaOPT and the effectiveness of using
loosely coupled UI subspaces for parallelization.

6.5 RQ6. Reduction of overlapped explorations
This RQ aims to find out how TaOPT improves the effec-
tiveness of parallelized testing by studying its capability of

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

Table 6. UI overlap measured by the average # of occurrences of distinct UIs.

App Name Baseline TaOPT (Duration) TaOPT (Resource)
Mon. Ape WCT. Mon. Ape WCT. Mon. Ape WCT.

AbsWorkout 128.3 40.7 64.0 14.1 34.1 69.2 12.1 26.1 62.8
AccuWeather 12.1 17.0 39.6 3.2 18.2 17.9 3.1 10.0 14.2
AutoScout24 29.3 9.0 14.8 4.4 6.7 14.6 7.0 7.6 13.9
Merriam-Webster 7.9 45.3 22.7 7.4 27.6 44.3 5.7 22.7 30.5
Duolingo 67.3 37.2 23.3 14.4 27.2 68.9 25.1 29.4 27.7
Filters For Selfie 5.1 2398.5 2755.0 4.9 30.6 1355.9 3.7 37.4 1990.7
GoodRx 18.1 18.8 21.9 20.2 22.2 21.2 14.2 22.2 20.5
Google Chrome 79.4 10.3 12.8 10.0 10.7 16.3 8.8 12.7 14.2
Google Translate 20.8 17.4 20.7 9.3 15.4 20.3 10.5 16.7 21.4
WEBTOON 25.5 12.7 18.6 14.5 12.1 12.9 19.5 13.0 10.6
Marvel Comics 16.6 53.7 40.1 9.0 18.0 38.1 9.0 19.1 40.5
Ms Word 8.9 28.2 36.2 6.0 17.4 36.6 5.3 16.1 28.3
Quizlet 14.0 7.8 10.4 7.7 6.7 10.4 7.0 7.2 14.9
Sketch 28.4 11.1 43.2 35.5 15.3 38.7 31.9 11.4 38.4
TripAdvisor 52.1 8.1 6.9 19.2 8.0 7.6 19.1 7.8 7.2
Trivago 11.2 8.2 20.1 5.3 5.7 15.7 5.9 7.8 17.7
UC Browser 36.5 8.0 22.5 12.6 7.7 15.6 9.0 7.3 18.6
Zedge 10.1 8.7 673.7 8.0 10.0 38.3 16.2 10.9 38.7
Average 31.8 152.3 213.7 11.4 16.3 102.4 11.8 15.9 133.9
Δ - - - 64.5% 89.5% 52.1% 64.5% 90.1% 37.6%

reducing overlapping explorations. We measure the average
number of occurrences of distinct UI screens observed dur-
ing testing across all testing instances, since TaOPT uses the
UI screens and their similarity to determine the UI subspace.
We represent UI screens by their abstract UI hierarchies (us-
ing the strategy from previous work [66]) to avoid being
overly sensitive to screen content changes. Table 6 shows
the statistics of overlapped UI screens for three parallel runs,
where the Δ = (#Baseline − #TaOPT) ÷ #Baseline × 100%
represents the relative overlap reduction for the correspond-
ing tool. As can be seen, TaOPT-conducted parallel runs
have substantially smaller UI overlaps on average compared
with the baseline runs, with 64.5%, 90.1%, 37.6% fewer, and
64.5%, 89.5%, 52.1% fewer per-UI occurrences by Monkey,
Ape, WCTester in resource and duration-constrained par-
allel runs, respectively. Notably, TaOPT reduces the most
overlapping explorations in Ape, which has the highest over-
lapping explorations found in our preliminary study (de-
tailed in Section 3.2). In conclusion, TaOPT effectively re-
duces overlapping explorations and substantially improves
the parallelization effectiveness with high generalization.

7 Discussion
While we focus TaOPT on automated UI testing, the core
concepts of TaOPT, i.e., detecting loosely coupled subspaces
and the theoretical foundation of graph partitioning, can
be generalized beyond GUI testing. First, our approach can
be adapted to any event-driven system where the program
state space can be partitioned based on event transitions. Ex-
amples include network protocols and distributed systems,
where states and transitions can be analyzed similarly to UI
screens and actions. Second, the theoretical foundation of

our approach is particularly promising for generalization,
as many software systems naturally exhibit the property of
being globally sparse (loose coupling among major compo-
nents) but locally dense (tight coupling within components).

8 Threats of validity
The main external threat comes from the environmental
dependencies of our subject apps. Specifically, part of our
subject apps require network access to maintain the main
functionalities. Toward minimizing the effects of such envi-
ronmental dependencies, we ensure the consistency of our
experimental environment during the experiment process,
make each parallel run include five testing instances, and use
aggregated metrics. The major internal threat to our work
would be the potential faults from both the implementation
of Toller and the setup of all Android testing tools involved
in our experiments, which may affect our experimental re-
sults. To mitigate these internal threats to the validity of our
work, we output relevant logs and the used metrics for each
experiment, and manually inspect the samples of experimen-
tal logs to ensure correctness.

9 Related work
Automated UI testing for Android. Existing tools are
mainly in the form of automatic input generation, gener-
ally divided into three categories. (i) Random UI testing [40,
42, 50, 70]. For example, Monkey [21] generates random in-
puts without considering the semantics of app UIs, often
serving as the baseline of comparison. (ii) Model-based UI
testing [9, 14, 26, 27, 36, 39, 53, 60]. Badge [53] guides test
input generation by dynamically constructing a stochastic

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

model of the app’s behavior and leveraging this model to
balance between exploiting known promising paths and ex-
ploring new UI states. (iii) Systematic exploration [1, 4, 41].
A3E [4] constructs systematic exploration traces using both
dynamic and static analyses.
Parallel testing. Existing parallel testing includes paralleliz-
ing mutation testing [43], testing distributed software [34],
and symbolic execution [7, 58]. Different from traditional pro-
grams, the control and data dependencies within UI-based
apps are hard to obtain statically. Additionally, there ex-
ist efforts [10, 62, 67] aiming to enable parallel UI testing
on Android. PATS [67] proposes a master-slave framework,
where themaster device performs initial explorations and dis-
patches tasks to slaves as new UI states are discovered. Such
strategy is highly susceptible to overlapping explorations,
mainly due to many UI transitions being bidirectional in real-
world apps; for example, one can often press Back to return
to the previous screen. ParaAim [10] proposes partitioning
an Android app for parallel testing on activity granularity.
This simple strategy is easily vulnerable to uneven parti-
tioning, where various activities convey different quantities
of app features, especially when using Fragments [23], and
cannot be generalized to any testing tools.
Graph partitioning. Graph partitioning [28] is a popular
and general model frequently used to formulate numerous
practical applications in various domains [8]. Given that the
general graph partition problem is NP-hard [28], numerous
heuristics are proposed [3, 20] to efficiently approximate the
optimal results under different relaxations of the underlying
graphs. Previous work [3] studies the problem of partition-
ing graphs into subgraphs that are of similar sizes. There
are also extensive research efforts focusing on practical sce-
narios where partitions are conducted based on local graph
information [2, 29, 46, 59, 71].
Trace and log analysis. TaOPT is instantiated with trace
and log analysis techniques. Existing work applies log anal-
ysis with various techniques. (i) Anomaly detection [19, 45,
73, 77]. LogRobust [73] uses deep neural networks to cap-
ture the context in sequences and learn the importance of
different events automatically. (ii) Cause locating [12, 16, 56,
74, 79]. In the collected logs, Kairux [74] searches for the
non-failure instruction sequence that has the longest com-
mon prefix with the fault sequence to assist in the cause
locating of distributed-system faults. (iii) Performance-issue
detection [52, 66, 75, 76]. VET [66] identifies performance
issues of automated UI testing tools from logs collected from
previous testing runs. Their analysis also supports our ob-
servation that loosely coupled UI spaces are prevalent across
different testing tools and mobile apps.

10 Conclusion
In this paper, we have looked into the opportunities of re-
ducing testing duration and/or saving testing resources in

the context of parallelization for automated mobile UI test-
ing. Specifically, we have presented TaOPT, a parallelization
approach that automatically manipulates the App Under
Test (AUT) to guide a UI test generation tool. TaOPT con-
ducts on-the-fly trace analysis to infer loosely-coupled AUT
UI subspaces and coordinates testing instances to explore
each UI subspace, substantially reducing the overlapping
explorations across testing instances. To evaluate TaOPT,
we have applied it on 18 highly popular industrial apps with
three state-of-the-art/practice tools for automated mobile
UI testing. Our evaluation results have shown that TaOPT
substantially and consistently improves the parallelization
effectiveness of the three automated mobile UI testing tools.

Acknowledgments
Tao Xie is the corresponding author. This work was partially
supported by NSFC under Grant No. 92464301, No. 623B2006,
an Amazon Trust AI Research Award, and the Tencent Foun-
dation/XPLORER PRIZE.

References
[1] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.

2012. Automated concolic testing of smartphone apps. In FSE.
[2] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph parti-

tioning using pagerank vectors. In FOCS.
[3] Konstantin Andreev and Harald Räcke. 2004. Balanced graph parti-

tioning. In SPAA.
[4] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first

exploration for systematic testing of Android apps. In OOPSLA.
[5] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based

Android GUI testing using multi-level GUI comparison criteria. In
ASE.

[6] Kenneth P Birman. 1993. The process group approach to reliable
distributed computing. Commun. ACM 36, 12 (1993).

[7] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011.
Parallel symbolic execution for automated real-world software testing.
In EuroSys.

[8] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. 2016. Recent advances in graph partitioning. Algo-
rithm engineering (2016).

[9] Tianqin Cai, Zhao Zhang, and Ping Yang. 2020. Fastbot: a multi-agent
model-based test generation system. In AST.

[10] Chun Cao, Jing Deng, Ping Yu, Zhiyong Duan, and Xiaoxing Ma. 2019.
ParaAim: testing Android applications parallel at activity granularity.
In COMPSAC.

[11] Jeff Cheeger. 2015. A lower bound for the smallest eigenvalue of the
Laplacian. In Problems in analysis. Princeton University Press.

[12] An Ran Chen. 2019. An empirical study on leveraging logs for debug-
ging production failures. In ICSE.

[13] Herman Chernoff. 1952. A measure of asymptotic efficiency for tests
of a hypothesis based on the sum of observations. The Annals of

Mathematical Statistics (1952).
[14] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI

testing of Android apps withminimal restart and approximate learning.
In OOPSLA.

[15] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015.
Automated test input generation for Android: are we there yet?. In
ASE.

[16] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,
RuoyuWang, and Insu Yun. 2018. REPT: Reverse debugging of failures

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie

in deployed software. In OSDI.
[17] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data

processing on large clusters. Commun. ACM 51, 1 (2008).
[18] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou

Li, Fenghao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. 2018.
Understanding Android obfuscation techniques: A large-scale investi-
gation in the wild. In SecureComm.

[19] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog:
Anomaly detection and diagnosis from system logs through deep
learning. In CCS.

[20] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. 1999. Fast
approximate graph partitioning algorithms. SIAM J. Comput. 28, 6
(1999).

[21] Google. 2021. Android Monkey. https://developer.android.com/studio/
test/monkey.

[22] Google. 2021. Logcat command-line tool. https://developer.android.
com/studio/command-line/logcat.

[23] Google. 2023. Android Fragment. https://developer.android.com/
reference/android/app/Fragment.

[24] Google. 2024. Introduction to Android activities. https://developer.
android.com/guide/components/activities/intro-activities.

[25] Tianxiao Gu. 2021. MiniTrace. http://gutianxiao.com/ape.
[26] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu,

Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI
testing of Android applications via model abstraction and refinement.
In ICSE.

[27] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh
Govindan. 2014. PUMA: Programmable UI-automation for large-scale
dynamic analysis of mobile apps. In MobiSys.

[28] Juris Hartmanis. 1982. Computers and intractability: a guide to the
theory of NP-completeness (Michael R. Garey and David S. Johnson).
Siam Review 24, 1 (1982).

[29] Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof
Onak. 2009. Local graph partitions for approximation and testing. In
FOCS.

[30] Jianjun Huang, Yousra Aafer, David Perry, Xiangyu Zhang, and Chen
Tian. 2017. UI driven Android application reduction. In ASE.

[31] Kobiton. 2022. Kobiton: Mobile Device Testing. https://kobiton.com/.
[32] Sauce Labs. 2022. Sauce Labs. https://saucelabs.com/.
[33] LambdaTest. 2022. LambdaTest: Cross Browser Testing Cloud. https:

//www.lambdatest.com/.
[34] Alexey Lastovetsky. 2005. Parallel testing of distributed software.

Information and Software Technology 47, 10 (2005).
[35] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,

Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017.
Static analysis of Android apps: A systematic literature review. Infor-
mation and Software Technology 88 (2017).

[36] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droid-
Bot: A lightweight UI-guided test input generator for Android. In
ICSE-Companion.

[37] Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Liangyi Gong, Di
Gao, Yunhao Liu, Feng Qian, Zhao Zhang, Ping Yang, and Tianyin Xu.
2023. Virtual device farms for mobile app testing at scale: A pursuit
for fidelity, efficiency, and accessibility. In MobiCom.

[38] Yi Liu, Yun Ma, Xusheng Xiao, Tao Xie, and Xuanzhe Liu. 2023. Lego-
Droid: Flexible Android app decomposition and instant installation.
Science China Information Sciences 66, 4 (2023).

[39] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping
Yang. 2022. Fastbot2: Reusable Automated Model-based GUI Testing
for Android Enhanced by Reinforcement Learning. In ASE.

[40] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid:
An input generation system for Android apps. In ESEC/FSE.

[41] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid:
Segmented evolutionary testing of Android apps. In FSE.

[42] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective
automated testing for Android applications. In ISSTA.

[43] Pedro Reales Mateo and Macario Polo Usaola. 2013. Parallel mutation
testing. Software Testing, Verification and Reliability (2013).

[44] Bojan Mohar. 1989. Isoperimetric numbers of graphs. Journal of

combinatorial theory, Series B 47, 3 (1989).
[45] Cristina Monni and Mauro Pezzè. 2019. Energy-based anomaly detec-

tion a new perspective for predicting software failures. In ICSE-NIER.
[46] Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-based algorithms

for local graph clustering. In SODA.
[47] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong

Li. 2020. Reinforcement learning based curiosity-driven testing of
Android applications. In ISSTA.

[48] Perfecto. 2022. Perfecto: Web & Mobile App Testing | Continuous
Testing. https://www.perfecto.io/.

[49] Michael J Quinn. 1994. Parallel computing theory and practice. McGraw-
Hill, Inc.

[50] Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng,
Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie. 2022. Au-
tomated visual testing for mobile apps in an industrial setting. In
ICSE-SEIP.

[51] Dezhi Ran, Zihe Song, Wenyu Wang, Wei Yang, and Tao Xie. 2025. Im-
plementation of TaOPT. https://github.com/PKU-ASE-RISE/TaOPT.

[52] Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying
Zhang, Wei Yang, and Tao Xie. 2024. Guardian: A runtime framework
for LLM-based UI exploration. In ISSTA.

[53] Dezhi Ran, Hao Wang, Wenyu Wang, and Tao Xie. 2023. Badge: Prior-
itizing UI events with hierarchical multi-armed bandits for automated
UI testing. In ICSE.

[54] Raimundo Real and Juan M Vargas. 1996. The probabilistic basis of
Jaccard’s index of similarity. Systematic biology 45, 3 (1996).

[55] Amazon Web Services. 2022. AWS Device Farm. https://aws.amazon.
com/device-farm/.

[56] Weiyi Shang, ZhenMing Jiang, Hadi Hemmati, Bram Adams, Ahmed E.
Hassan, and Patrick Martin. 2013. Assisting developers of big data
analytics applications when deploying on Hadoop clouds. In ICSE.

[57] Jiří Šíma and Satu Elisa Schaeffer. 2006. On the NP-completeness of
some graph cluster measures. In SOFSEM.

[58] Matt Staats and Corina Pǎsǎreanu. 2010. Parallel symbolic execution
for structural test generation. In ISSTA.

[59] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning
for large distributed graphs. In KDD.

[60] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,
Geguang Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic
model-based GUI testing of Android apps. In ESEC/FSE.

[61] Vaidy S. Sunderam. 1990. PVM: A framework for parallel distributed
computing. Concurrency: Practice and Experience 2, 4 (1990).

[62] Porfirio Tramontana, Nicola Amatucci, and Anna Rita Fasolino. 2020.
A technique for parallel GUI testing of Android applications. In ICTSS.

[63] PeiWang, Qinkun Bao, LiWang, ShuaiWang, Zhaofeng Chen, TaoWei,
and Dinghao Wu. 2018. Software protection on the go: A large-scale
empirical study on mobile app obfuscation. In ICSE.

[64] Wenyu Wang, Wing Lam, and Tao Xie. 2021. An infrastructure ap-
proach to improving effectiveness of Android UI testing tools. In ISSTA.

[65] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang,
Yuetang Deng, and Tao Xie. 2018. An empirical study of Android test
generation tools in industrial cases. In ASE.

[66] Wenyu Wang, Wei Yang, Tianyin Xu, and Tao Xie. 2021. Vet: Identify-
ing and avoiding UI exploration tarpits. In ESEC/FSE.

[67] Hsiang-Lin Wen, Chia-Hui Lin, Tzong-Han Hsieh, and Cheng-Zen
Yang. 2015. PATS: A parallel GUI testing framework for Android
applications. In COMPSAC.

[68] Sinead A Williamson and Mauricio Tec. 2020. Random clique covers
for graphs with local density and global sparsity. In UAI.

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
http://gutianxiao.com/ape
https://kobiton.com/
https://saucelabs.com/
https://www.lambdatest.com/
https://www.lambdatest.com/
https://www.perfecto.io/
https://github.com/PKU-ASE-RISE/TaOPT
https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/

Tool-Agnostic Optimization of Parallelized Automated Mobile UI Testing ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[69] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-box Approach
for Automated GUI-model Generation ofMobile Applications. In FASE.

[70] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. Droid-
Fuzzer: Fuzzing the Android apps with intent-filter tag. In MoMM.

[71] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017.
Local higher-order graph clustering. In KDD.

[72] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing
Lam, Wei Yang, and Tao Xie. 2016. Automated test input generation
for Android: Are we really there yet in an industrial case?. In FSE.

[73] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong
Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xi-
aoting He, Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao
Shen, and Dongmei Zhang. 2019. Robust log-based anomaly detection
on unstable log data. In ESEC/FSE.

[74] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding
Yuan. 2019. The inflection point hypothesis: A principled debugging
approach for locating the root cause of a failure. In SOSP.

[75] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm.
2016. Non-intrusive performance profiling for entire software stacks
based on the flow reconstruction principle. In OSDI.

[76] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo,
Ding Yuan, and Michael Stumm. 2014. Lprof: A non-intrusive request
flow profiler for distributed systems. In OSDI.

[77] Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak,
Sonia BenMokhtar, and Lydia Y Chen. 2019. Robust anomaly detection
on unreliable data. In DSN.

[78] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng,
Yuetang Deng,Wing Lam,Wei Yang, and Tao Xie. 2017. Automated test
input generation for Android: Towards getting there in an industrial
case. In ICSE-SEIP.

[79] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin
Xiang, and Chuan He. 2019. Latent error prediction and fault localiza-
tion for microservice applications by learning from system trace logs.
In ESEC/FSE.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminary Study
	3.1 Study Setup
	3.2 RQ1: Parallelization via Intrinsic Randomness
	3.3 RQ2: Activity-based Parallelization Strategy

	4 Problem Formulation
	4.1 Parallelizing Automated UI Testing as Min-Conductance Graph Partitioning
	4.2 Exploiting Local Density of Loosely Coupled UI Subspaces for Online Partitioning

	5 The TaOPT Approach
	5.1 Workflow of TaOPT
	5.2 UI Subspace Identification with a Trace Analyzer
	5.3 Parallelization with a Test Coordinator

	6 Evaluation
	6.1 Evaluation Setup
	6.2 RQ3. Reduction of needed testing duration
	6.3 RQ4. Reduction of needed machine time
	6.4 RQ5. Test effectiveness improvement
	6.5 RQ6. Reduction of overlapped explorations

	7 Discussion
	8 Threats of validity
	9 Related work
	10 Conclusion
	References

