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Abstract

Security-patch localization, which links disclosed vulnerabilities
in open-source software (OSS) to corresponding patches, has be-
come a practical technique tomitigate the risk of OSS vulnerabilities
in a timely manner. While existing approaches extensively focus on
estimating the correlation between individual patches and Common
Vulnerabilities and Exposures (CVEs), they often fail to address two
major industrial requirements that make a tool of security-patch
localization desirable in industrial settings: (1) efficiency when in-
specting an enormous number of commits per vulnerability and (2)
robustness to handle confusing patches (related but non-fixing com-
mits). Toward addressing the preceding industrial requirements, in
this paper, we report our experiences of developing and deploying
Taper, a two-stage approach for efficiently and robustly locating
security patches via mining the temporal relations among commits
and CVEs. In the first stage, Taper extracts the information of the
fixed version and the affected version from CVE descriptions to
narrow down the inspection scope of commits, thus significantly
improving the efficiency. In the second stage, Taper collects tempo-
rally co-located patches around the genuine security-patch commit
as hard negative examples for security-patch localization. By fine-
tuning a language model with these hard negative samples, Taper
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avoids recognizing confusing patches as security patches, thus im-
proving patch-localization precision and robustness. We evaluate
Taper against 2,128 CVEs from 978 OSS projects, which have a
balanced distribution of programming languages and are consistent
with industrial settings. Evaluation results show that Taper substan-
tially outperforms a state-of-the-art approach named PatchFinder,
improving the absolute MRR and Recall@1 by 0.422 and 0.541,
respectively. Taper has been deployed at Huawei Cloud since Oc-
tober 2024. During 800 hours of operation, Taper helps locate over
52,140 security patches, providing daily service of security-patch
localization for the Huawei company and Huawei Cloud users.
We summarize three major lessons learned from developing and
deploying Taper.
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1 Introduction

With the wide adoption of Open-Source Software (OSS) in soft-
ware industry, OSS vulnerabilities have also experienced rapid
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growth [2, 33] and resulted in severe losses [14, 33] due to their
widespread use for building important applications [6, 50, 64].While
vulnerabilities can be fixed with security patches [10], over 90% of
the vulnerabilities are fixed silently without a direct link to the cor-
responding security patches [52], making it difficult for developers
to schedule software updates and missing valuable opportunities
to understand security patches for subsequent reuse. To timely
track silent fixes, security-patch localization [52] links disclosed
OSS vulnerabilities, e.g., Common Vulnerabilities and Exposures
(CVEs) [56], to the corresponding security patches.

To reduce the labor costs of security-patch localization, recent
work [12, 31, 38, 52, 58] aims to automatically locate security patches
by estimating the correlation between each patch and the CVE de-
scription based on lexical and semantic similarities. PatchScout [52]
ranks software commits based on the correlation between CVE
descriptions and commit messages using manually defined fea-
tures with auxiliary information from CVE or National Vulnerabil-
ity Database (NVD). VCMatch [58] improves upon PatchScout by
learning semantic features in vulnerability descriptions and commit
messages and using a voting-based rank fusion technique to com-
bine results from multiple learned models for better performance.
PatchFinder [31] incorporates code semantics through supervised
fine-tuning over pairs of CVE descriptions and security patches to
learn semantic similarity between commits and CVE descriptions.

While extensively focused on estimating the correlation between
individual patches and CVEs, existing work [31, 52, 58] fails to meet
two industrial requirements that make a tool of security-patch
localization desirable in industrial settings.
Efficiency requirement for scanning commits at scale. Popular
OSS projects typically contain an enormous number of commits,
making security-patch localization akin to finding a needle in a
haystack. Existing approaches [52, 58] employ a strategy of broad
temporal search, examining all commits within an extended win-
dow around the CVE publication date. For instance, PatchScout [52]
inspects commits within a two-year window (1.5 years before and
0.5 years after CVE release), while VCMatch [58] examines com-
mits within a one-year window (0.5 years before and after). As
shown in Figure 1, these exhaustive inspection strategies require
examining over 10,000 commits to find the security patch, not only
undermining effectiveness to find the correct security patch but
also incurring substantial compute overhead.
Robustness requirement for distinguishing confusing patches

from genuine security patches. Existing approaches [31, 52, 58]
fall short in differentiating security patches from confusing patches,
which share security-relevant characteristics with the actual fix but
do not patch the given CVE. As illustrated in Figure 1, in addition to
committing the security patch for CVE-2024-32002 (a path traver-
sal vulnerability) in Git, developers also commit patches that add
additional defense strategies against path traversal attacks. When
locating security patches in this example, the state-of-the-art ap-
proach PatchFinder [31] fails to differentiate such confusing patches
since it relies on a simplistic training strategy that contrasts known
security patches against randomly selected non-security patches.

Toward satisfying the preceding industrial requirements for prac-
tical security-patch localization, in this paper, we report our expe-
rience of developing and deploying Taper, a two-stage approach

designed based on two key insights. First, Taper substantially nar-
rows down the inspection scope by leveraging version information
in CVE descriptions. Version releases serve as critical milestones in
OSS development, and CVE descriptions typically specify both the
latest affected version and the version where the vulnerability is
patched [12]. By extracting this version information and mapping
it to corresponding tags in the OSS project under consideration,
Taper substantially reduces the number of commits requiring in-
spection, helping address the efficiency challenge. Second, Taper
exploits the observation that confusing patches usually co-occur
with security patches, reflecting developers’ concentrated efforts
to defend against the revealed vulnerability. By utilizing these tem-
porally co-located confusing patches as hard negative examples,
Taper enhances its robustness and ability to distinguish between
genuine security patches and related but non-fixing changes.

To instantiate the preceding insights into an automated, cost-
effective, and robust system for industrial deployment, we imple-
ment Taper with fine-tuned Qwen-2.5 7B model [55] using two
sources of data.
Robust version extraction with missing data handling. To ad-
dress the challenge of inconsistent version-naming conventions in
security advisories [11], we construct a dataset of 500 CVE descrip-
tions paired with manually annotated version information in two
steps. First, we extract the numeric version identifiers directly from
CVE descriptions. Second, we transform these numeric versions to
align with project-specific formatting conventions (e.g., adding “v-”
prefixes where appropriate), making the output of an LLM directly
usable for matching the affected software packages and versions.
A key feature in our dataset is the explicit handling of incomplete
information. For CVEs lacking version details in their descriptions,
we deliberately label them as “None” rather than attempting to
infer missing data. This approach significantly improves model ro-
bustness by teaching the LLM to recognize information gaps rather
than hallucinating version numbers [24]. To ensure comprehensive
coverage in production environments, we implement a fallback
mechanism that activates when our model indicates that no ver-
sion information is available. In these cases, Taper automatically
employs established extraction techniques [52, 58]. For efficient
model training, we employ Low-Rank Adaptation (LoRA) [21], a
parameter-efficient fine-tuning technique updating only a small
subset of model parameters. LoRA dramatically reduces compu-
tational requirements while maintaining extraction performance,
making industrial deployment both practical and cost-effective.
Automated confusing-patch mining from temporal commit

windows. Rather than relying on labor-intensive manual identifica-
tion of confusing patches, we employ an automated data collection
approach based on our observation that commits surrounding a
security patch often address peripheral aspects of a vulnerabil-
ity without providing the actual fix. These temporally co-located
commits, exhibiting textual and structural similarities to genuine
security patches, create significant challenges for robust security-
patch localization.We collect the ten commits preceding and the ten
commits following a confirmed security patch as negative examples
in our training dataset. We fine-tune the LLM to distinguish be-
tween true security fixes and related but non-fixing modifications,
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substantially improving the robustness of Taper in locating gen-
uine security patches while avoiding false positives from confusing
patches.

To evaluate the efficacy of Taper, we conduct extensive eval-
uations against a state-of-the-art approach PatchFinder [31] on
security-patch localization datasets annotated from real-world OSS
projects and CVE databases. Our results demonstrate Taper’s effec-
tiveness in three key aspects. First, Taper substantially outperforms
PatchFinder, with 0.422 and 0.541 absolute improvement in Mean
Reciprocal Rank (MRR) and Recall@1, respectively. Second, our
version-based filtering reduces unnecessary patch inspections by
over 90%, meeting industrial-deployment efficiency requirements.
Third, our ablation studies confirm the critical importance of differ-
entiating confusing patches. When using randomly selected com-
mits as negative examples, Taper’s performance actually decreases
compared to fine-tuning with only positive security patch examples.
In contrast, fine-tuning with temporally co-located commits as hard
negative examples not only improves Taper’s MRR and Recall@1
in security patch localization but also reduces manual inspection
efforts by 68.1% when reviewing candidate security patches.

We have deployedTaper since October 2024 internally at Huawei
Cloud [22], one of leading companies in cloud computing with
over 3 million enterprise users and developers. Taper has run for
over 800 hours and located security patches for more than 52,140
CVEs, which are incorporated into Huawei Cloud’s vulnerability
database as valuable security assets to support various vulnerability
management services across the platform, directly enhancing the
security posture of enterprise customers.

In summary, this paper makes the following main contributions:

• Taper, a novel two-stage approach to satisfy the efficiency
and robustness requirements for security-patch localization
in an industrial setting.

• Extensive evaluations on security-patch localization datasets
annotated from real-world OSS projects and CVE databases,
demonstrating the effectiveness, efficiency, and robustness
of Taper.

• Experiences and lessons learned from developing and de-
ploying Taper at Huawei Cloud, aligning future research on
security-patch localization with realistic industrial settings.

2 Motivation

To streamline vulnerability management and ensure the security
of provided services, software engineers in Huawei Cloud [22] aim
to develop an approach to automatically identify security patches
for a given CVE within a given OSS project. When localizing the
security patch for fixing the vulnerability CVE-2024-32002 (depicted
in Figure 1), the state-of-the-art approach PatchFinder [31] is faced
with both efficiency and robustness challenges.
Efficiency Challenge. Figure 1 shows that the window between
vulnerability discovery and disclosure spans thousands of commits.
Existing approaches [52, 58] require scanning 1,000+ commits per
CVE, prohibitively slow for Huawei Cloud’s scale (thousands of
repositories to analyze daily).
Robustness Challenge. As shown in Figure 1, three semantically
similar but functionally distinct patches coexist: (1) the true security
patch (middle), (2) a partial fix validating submodule directories

while overlooking the symbolic link vulnerability (left), and (3) a
post-fix enhancement adding clone-time hook validation (right).
Current approaches [52, 58] fail to differentiate these cases because
their training datasets lack such hard negatives as their training sim-
ply contrasts known security patches against random non-security
patches, missing the subtle differences between security patches
and confusing patches.

3 Taper Approach

3.1 Insights for developing Taper

To address the industrial challenges discussed in Section 2, we
derive two key insights based on our industrial experiences.

Insight 1: Version information as natural boundary for effi-

ciency improvement. CVE descriptions typically contain version
information that delineates affected and patched versions of the
CVE. This natural boundary can effectively narrow down the search
space for candidate patches, significantly improving identification
efficiency.

Insight 2: Leveraging co-occurring patches for robustness

improvement against confusing patches. Security-relevant com-
mits often cluster temporally, with actual security patches accom-
panied by related defensive changes. These co-occurring patches,
while potentially confusing for automated tools, provide valuable
training data for improving model robustness without additional
labeling effort.

To instantiate the preceding insights, we design and implement a
two-stage approach in Taper for security-patch localization. In the
first stage, following the first insight, we develop a version-based fil-
tering mechanism to narrow down candidate patches. In the second
stage, guided by the second insight, we incorporate co-occurring
patches into our training data to enhance model robustness against
confusing patches.

3.2 Workflow of Taper

Figure 2 presents the workflow of Taper.
Inputs. The inputs of Taper consist of a reported CVE CVE, the
commit history C = {𝑐0, ..., 𝑐𝑛}, and the list of tags in the affected
OSS project.
Version-based candidate filtering. In the first stage, given the
description of CVE and the list of tags, Taper prompts a fine-tuned
LLM (detailed in Section 3.3) with the prompt described in Figure 3
to obtain the latest affected version and the first fixed version for
filtering candidates to locate. Then Taper collects all the commits
submitted between the two versions as C𝑐𝑎𝑛𝑑 , the candidate set for
the second stage. If the LLM does not respond with the versions,
Taper treats the version information as missing and falls back to
the time-interval-based technique following previous work [52, 58],
i.e., selecting all commits submitted within one year before the
CVE is publicly published as C𝑐𝑎𝑛𝑑 , the candidate set for the second
stage.
Generative localization of security patches. Given the candi-
date patches C𝑐𝑎𝑛𝑑 to inspect and the description of CVE, Taper
uses a fine-tuned LLM (detailed in Section 3.4) with the prompt
shown in Figure 4 to judge whether each commit in C𝑐𝑎𝑛𝑑 is a
security patch for the CVE. Taper collects all commits for which
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Security Patch

… ……… ！
Ver. 2.39.3Commit at

05/14/2023
CVE Publish at 

05/14/2024

10000+ commits in 1 year

100+ commits between Versions

Ver. 2.39.4

Confusing Patch A Confusing Patch B

cve_id: CVE-2024-32002

Description: 
…
submodules can be crafted to write 
files not into the submodule in Git 
prior to versions 2.39.4 ... has been 
patched in versions 2.39.4 …
...

cwe_id: CWE-434,59,22
CVSS_score: 9.0
Publish_Date: 05/14/2024

Figure 1: Locating the security patch for CVE-2024-32002, a path traversal vulnerability in Git’s submodule handling. Top:

Timeline showing that an vulnerability (allowing unauthorized file writes to “.git/” directory) was fixed in version 2.39.4 and

publicly disclosed on 05/14/2024. Bottom: The actual security patch (green, middle) and two confusing patches that implement

related defenses: one validating directory paths (left) and the other adding post-fix security enhancements (right).

CVE Description

Inputs
Fine-tuned 

LLM

Fine-tuned 
LLM

·· ·· Sec 3.3 Version-based Filtering

Latest Affected &
First Fixed Version 

All Commits in the OSS

··Tags in the OSS

·· ··

Filtered Commits

Output(s)
Sec 3.4 Robust Patch LocalizationLocalized Security Ptach(es)

Figure 2: Workflow of using Taper to locate security patches

for a given CVE and an OSS project.

the LLM’s responses are “Yes” as the located security patches for
users to inspect.
Outputs. The outputs of Taper are a set of identified commits
𝐶𝑐𝑣𝑒 ⊂ C for manual examination. As shown in our evaluation
(detailed in Section 4.4), the average size of 𝐶𝑐𝑣𝑒 is 1.73, substan-
tially smaller than baseline approaches and making Taper labor-
economic for industrial localization of security patches.

3.3 Version-based Patch Filtering with A

Fine-tuned Large Language Model

A popular OSS repository typically contains tens of thousands of
commits, making it time-consuming to inspect all commits for each
security-patch localization. While existing approaches [52, 58] filter
commits based on CVE release timing (e.g., examining commits
within 0.5 years before and after CVE publication), they still require
inspecting over 1,000 commits to locate 75% of security patches
(detailed in Section 4). Based on our experience at Huawei Cloud,
over 90% of vulnerability descriptions contain version information
(e.g., “prior to x.x.x” or “x.x.x was affected”), which can significantly
narrow the search space. However, version information appears
in diverse, non-standardized formats across vulnerability descrip-
tions [11], making automated extraction of version information
challenging.

To address these challenges, we exploit the power of large lan-
guage models (LLMs) to cost-effectively extract version numbers
from CVE descriptions and align them to the given OSS project. We
construct a dataset of 500 CVEs published after 2022 with manually
annotated version information through a two-stage process. First,
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we extract numeric version identifiers directly from CVE descrip-
tions. Second, we transform these identifiers to align with project-
specific formatting conventions (e.g., adding “v-” prefixes where
appropriate). Of the 500 CVEs, we successfully label version ranges
for 462 (92.4%). For the remaining 38 CVEs lacking complete ver-
sion information, we deliberately label them as “None” rather than
attempting to infer missing data. This approach teaches the LLM
to recognize information gaps rather than hallucinating version
numbers [24]. The entire labeling process requires approximately
12 person-hours.

Using this dataset, we fine-tune a Qwen-2.5-7B model [55] using
Low-Rank Adaptation (LoRA) [21], a parameter-efficient technique
that updates only a small subset of model parameters while main-
taining extraction performance. As shown in Figure 3, we create
an instruction-tuning prompt [53] containing task instructions for
version extraction, the CVE ID and the description, and the 300
most recent repository tags (automatically crawled from GitHub) to
align version format consistency. This approach helps the LLM ex-
tract version information and align the version with project-specific
version-naming conventions.

During inference, we use the same prompt template for extract-
ing version information from unseen CVEs. To ensure comprehen-
sive coverage in production environments, we implement a fallback
mechanism that activates when our model indicates that no version
information is available. In these cases, Taper automatically reverts
to time-based filtering strategies following previous work [52, 58].

3.4 Robustness Fine-tuning Against Confusing

Patches

As shown in Figure 1, patches near vulnerability fixes often make
related code changes but do not directly address the security issue.
These confusing patches frequently mislead existing approaches,
significantly reducing localization accuracy. Improving robustness
against such confusing patches requires additional fine-tuning,
which can be time-consuming and labor-intensive if manual anno-
tation is needed.

To address the preceding challenge cost-effectively, we propose
a semi-automated approach to collect confusing patches. Our key
insight is that OSS development exhibits temporal and spatial conti-
nuity, with related commits occurring consecutively. For each CVE,
we collect 𝑁 commits preceding and following the actual security
patch as confusing patches, leveraging the GitHub API. These 2×𝑁

neighboring commits serve as negative samples for fine-tuning,
where 𝑁 is a configurable hyperparameter. Using the dataset of
positive patches (actual security fixes) and negative samples (con-
fusing patches), we fine-tune Qwen-2.5 7B using LoRA with the
same settings described in Section 3.3. To enrich the context for
LLM judgment, we augment each commit with its associated is-
sue information, as issues often provide valuable complementary
information about the commit’s purpose. The final prompt tem-
plate (Figure 4) combines CVE ID and its description, project name,
commit details (hash, message, diff), and related issue information
when available. When the assembled prompt exceeds the LLM’s
context length limit, we truncate the commit details to ensure that
it fits within the allowed context window.

4 Evaluation

To evaluate the effectiveness of Taper, we conduct an extensive
evaluation to investigate the following four research questions:

• RQ1: Overall Effectiveness. How effective is Taper com-
pared with the state-of-the-art approach for security-patch
localization?

• RQ2: Efficiency Analysis. How efficient is Taper in reduc-
ing the number of irrelevant patches?

• RQ3: Robustness Analysis. How robust is Taper against
confusing patches?

• RQ4: Ablation Study. How does an individual component
contribute to the effectiveness of Taper?

4.1 Evaluation Setup

4.1.1 Datasets. To evaluate Taper for real-world security-patch
localization, we curate a dataset from two sources: CVEfixes [5],
and our industrial deployment at Huawei Cloud. We have obtained
1,825 CVEs and their fixes from the CVEfixes dataset while we
have also manually collected fixes for 303 CVEs ourselves. All vul-
nerabilities are identified post-2018 to avoid the pitfalls of earlier
vulnerabilities that often have informal and less valuable descrip-
tions. To enhance real-world applicability, we minimize reliance on
CVE Reference URLs (for patch links), which are crucial for identi-
fying patches for vulnerabilities that lack existing links. Moreover,
by employing regular expressions, we extract issues from commit
messages containing #NUM, correlating them with corresponding
issue information within the repository to obtain issue titles and
descriptions, which are then included in prompts. In all, our dataset
consists of 2,128 CVEs and their fixes. We randomly take 1,928 of
them for fine-tuning our model and take the remaining 200 CVEs as
the test set. For constructing hard negative samples, the training set
selects commits adjacent to positive samples, specifically 10 before
and after. For the testing set, we include all commits between tags
as outlined in the vulnerability description. If version information
is absent, we randomly select 150 commits between the vulnera-
bility’s disclosure date and the positive sample’s submission date,
using the GitHub Compare API to retrieve all relevant commits
within specified tag intervals.

4.1.2 Implementation of Taper. We implement Taper in Python.
We choose two open-source LLMs Llama3.1 [54] and Qwen2.5 [60],
as the base pre-trained LLMs, which possess balanced performance
on instruction understanding and code-related tasks. During fine-
tuning, the batch size is set to 1 and the maximum epoch is 4. We
adopt Adam [28] as the optimizer with a learning rate of 5e-5. All
preceding hyper-parameters are determined based on the valida-
tion set by selecting the best ones among some alternatives. All
experiments are conducted on a server with 64 CPU cores (Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz), 512 GB RAM, and 8 Huawei
Ascend 910B GPUs (64 GB memory each).

4.1.3 Baseline. We compareTaperwith the state-of-the-art security-
patch localization approach PatchFinder [31]. PatchFinder first em-
ploys the TF-IDF [8] and pre-trained CodeReviewer [32] to calcu-
late similarity score among candidate candidates and filter out the
lower ones in its initial retrieval. It then fine-tunes an LLM, specifi-
cally CodeReviewer, to rank the filtered commits through relevance
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### Task

Read the vulnerability description carefully, select the most appropriate 

tag numbers from the tag list as the earliest fixed version and latest 

affected version of the vulnerability.

### Input

Vulnerability {CVE_ID}: {CVE_Description}

Which has been confirmed affects: {Repo_Path}

Here is the list of tags in the above code repository: {Tag_List}

### Notes

Note that the list may not be complete, but it is guaranteed to be 

continuous, so select from the list whenever possible.

### Response Format

Your return should follow a JSON format with two keys: 'first_fixed_tag' 

and 'last_affected_tag’.

Label: first_fixed_tag:{First Fixed Tag Value}, 

last_affected_tag:{Last Afftecte Tag Value} 

Figure 3: Prompts Used for Version Extraction.

### Input

Vulnerability {cve_id}: {description}

Which has been confirmed affects: {repo_path} 

Here's the detail of a commit of the repository.

```json

{detail}

```

And the issue related to this commit

```json

{issue_info}

```

### Task

Could this commit be the fix patch of {cve_id}?’.

Label: {Yes Or No}

Figure 4: Prompts Used for Security-patch Localization.

Table 1: Overall Effectiveness

Approach MRR Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

PatchFinder [31] 0.149 0.0% 8.5% 11.5% 14.0% 16.0%
PatchFinder𝐹𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 ∗ 0.229 0.0% 13.5% 20.5% 26.0% 29.0%
Taper 0.651 54.5% 67.5% 71.5% 73.3% 74.0%
∗ We fine-tune the model of PatchFinder with the same training set as Taper.

scores. In our experiments, we strictly follow PatchFinder’s code
and guide to train it on our training and testing datasets, which
are exactly the same datasets where we train and test Taper in the
experiments.

4.1.4 Evaluation Metrics. Although Taper is not a ranking-based
approach for security-patch localization, we measure Taper with
the same metric as a ranking-based approach [31] to fairly compare
with the baseline and evaluate Taper’s effectiveness. Taper predicts
whether a candidate patch is the security patch or not, and ranks
all patches with prediction ‘Yes’ ahead of ‘No’.
Recall@K is a widely used metric in retrieval and ranking systems.
It is calculated as the ratio of the positive samples found in the
top-K results to the total number of positive samples among the
candidates. In rare cases, Taper predicts multiple candidate patches
to be the security patch and the metric is calculated as expectation
values when randomly ranking these positive patches.
Mean Reciprocal Rank (MRR) focuses more on the highest-rank
positive samples, ranging from 0 to 1, with higher value standing
for better localization ability. It calulates the sum of the reciprocal
of their rank as follows:

𝑀𝑅𝑅 =
1
|𝐷 |

∑︁
𝑐𝑣𝑒∈𝐷

1
max𝑐∈𝐶𝑐𝑣𝑒

rank𝑐
(1)

, where 𝐷 represents the evaluation dataset, 𝑟𝑎𝑛𝑘𝑐 is patch 𝑐’s
ranking in results, and 𝑐𝑣𝑒 and 𝐶𝑐𝑣𝑒 stand for a CVE description
and its corresponding positive samples, respectively. Note that we
have only one positive sample 𝑐𝑐𝑣𝑒 ∈ 𝐶𝑐𝑣𝑒 , so it can be written as

follows:
𝑀𝑅𝑅 =

1
|𝐷 |

∑︁
𝑐𝑣𝑒∈𝐷

1
rank𝑐𝑐𝑣𝑒

(2)

Similar to calculating Recall@K, when Taper predicts multiple
candidate patches to be the security patch, the metric is calculated
as expectation values.

4.2 RQ1: Overall Effectiveness

Table 1 presents the effectiveness comparison between Taper and
PatchFinder, revealing three key findings.

First, Taper achieves substantially higher MRR (0.651) compared
to both the original PatchFinder (0.149) and its fine-tuned variant
(0.229), and demonstrates consistently superior performance across
all Recall@K metrics. Second, Taper notably achieves 54.5% Re-
call@1 compared to PatchFinder’s 0%. This dramatic enhancement
in early-stage recall shows that Taper can precisely tell which
candidate is the actual security patch, while PatchFinder fails to
distinguish the confusing patches. Third, even after fine-tuning
PatchFinder with our training set, the substantial performance gap
persists, highlighting the fundamental advantages of our approach.
Compared to baseline approaches, Taper’s design assures its ro-
bustness against confusing patches.

We investigate the significant performance gap between PatchFinder
and Taper, as well as PatchFinder’s performance drop compared
to its reported results. Our analysis reveals two fundamental fac-
tors that explain PatchFinder’s limited effectiveness even after fine-
tuning. First, our evaluation dataset better represents contemporary
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Table 2: Programming Language Distribution in Our Dataset

Language C/C++ GO Java PHP Python JavaScript TypeScript Others

Training set 418 289 263 264 241 164 104 185
Testing set 62 5 43 24 20 21 7 18
Total 480 294 306 288 261 185 111 203

security-patch localization scenarios in real industry environment.
As shown in Table 2, our dataset achieves more balanced coverage
across programming languages, whereas PatchFinder’s original
dataset is heavily skewed toward C/C++ repositories (88%). More-
over, our dataset exhibits significantly better repository diversity.
PatchFinder’s original dataset has 41% of samples concentrated in
just five repositories (1% of total repositories), potentially limiting
its generalizability. Second, PatchFinder’s original training strategy
fails to learn robust security-patch patterns. PatchFinder randomly
selects 5,000 non-patch commits in the code repository as negative
samples (for each CVE), which are not strong enough for model to
learn how to distinguish confusing patches from the actual security
patches. This training-data disparity makes the model less effec-
tive under real industrial demands. These limitations underscore
the importance of Taper’s design choices to distinguish confusing
patches.

4.3 RQ2: Effectiveness of Patch Filtering

We compare the version-based filtering algorithm with the patch-
filtering algorithms used in existing approaches PatchScout [52]
and VCMatch [58]. PatchScout collects all commits in a project
that was made from 1.5 years before to 0.5 years after the public
disclosure of a vulnerability. This design is to capture a wide range
of potentially relevant changes, including those that may not be
immediately connected to the vulnerability but could influence
the development context or subsequent fixes. VCMatch collects
all commits (from the repository) that occurred within 0.5 years
before and after the vulnerability’s release. This tighter focus aims
to hone in on commits more directly related to the vulnerability’s
introduction and initial mitigation efforts.
Substantial efficiency improvement over existing approaches.

Figure 5 and Figure 6 present the statistics of the number of candi-
date commits filtered after Taper and time-interval-based filtering
employed by baseline approaches, respectively. By leveraging ver-
sion information, our approach demonstrates significant efficiency
in filtering relevant commits compared to traditional time-based
filtering approaches. The median number of candidate commits
is 36 for Taper, which is substantially lower than VCMatch (481
commits) and PatchScout (880.5 commits).
Effectiveness of fine-tuning for version extraction. Table 3
shows Taper’s fine-tuning models’ substantial improvements over
baselines without fine-tuning in terms of the accuracy of version
extraction. The non-fine-tuned baselines, which lack the benefit
of learned patterns from historical data, fall short in accurately
identifying version-specific commits, even for developed commer-
cial models such as GPT-4o-mini. However, both LLaMa3.1-8B and
Qwen2.5-7B achieve very high accuracy after fine-tuning. Espe-
cially, LLaMa3.1 has a relatively weaker instruction-following abil-
ity before fine-tuning (0.035) but improves drastically after fine-
tuning (0.882). It is worth noting that we deliberately keep about

Table 3: Effectiveness of Fine-tuning for Version Extraction.

LLMs Accuracy

GPT-4o-mini 0.684
Qwen2.5-7B-Instruct 0.455
Qwen2.5-7B-Instruct-Lora-SFTed 0.893

LLaMa3.1-8B-Instruct 0.035
LLaMa3.1-8B-Instruct-Lora-SFTed 0.882

10% of the CVEs where no exact version is given in the description
in the dataset. In these cases, we find that our fine-tuned model can
report this situation instead of generating hallucinations.

4.4 RQ3: Robustness Against Confusing Patches

In this RQ,we investigate the contribution of contrastive fine-tuning
over hard negatives (i.e., the confusing patches) mined from the
neighbor of security patches.

Table 4 presents detailed ablation results for different confusing-
patch construction approaches, revealing the following critical in-
sights about the effectiveness of our design choices.

The baseline results without confusing patches demonstrate the
necessity of confusing-patch construction in our approach. Using
Qwen-2.5-7b without fine-tuning achieves only moderate perfor-
mance with an MRR of 0.455 and Recall@1 of 32.3%. Our neighbor-
based confusing-patch construction strategy shows remarkable
improvements over both the baseline and random sampling ap-
proaches. With N=10 neighbors, our approach achieves an MRR of
0.651 and Recall@1 of 54.5%, representing substantial improvements
of 250% and 183%, respectively, compared to random sampling with
40 samples (MRR=0.401, Recall@1=29.7%).

The impact of neighborhood size (N) reveals interesting patterns
about our approach’s robustness. Performance remains consistently
strong across different neighborhood sizes, with N=10 showing
slightly optimal results. When N=5, the model achieves nearly
comparable performance (MRR=0.641, Recall@1=53.2%), with only
marginal decreases of 1.5% in MRR and 2.4% in Recall@1 when com-
pared to N=10. Increasing to N=20 also shows slight performance
drop, alongwith a 10.4% increase in average commits identified (1.91
vs 1.73). This pattern suggests that the construction of confusing-
patch samples, rather than the quantity of confusing-patch samples,
is the key factor in improving model discrimination. The stability
of performance across different neighborhood sizes also suggests
that our approach is both robust and computationally efficient, re-
quiring only a small number of carefully selected confusing-patch
samples to achieve optimal results.

Noticeably, the stark contrast between neighbor-based and ran-
dom sampling approaches is particularly evident in the progression
of random sampling results. Even as we increase the number of ran-
dom samples from 10 to 40, the performance gains are modest (MRR
improves from 0.305 to 0.401, Recall@1 from 21.4% to 29.7%), while
still maintaining unacceptably high false positive rates. This com-
parison validates our hypothesis that temporally proximate com-
mits provide more valuable confusing-patch examples for model
training than randomly selected samples, leading to both better
discrimination and more efficient patch identification, suggesting
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Figure 5: Distribution of the Number of Commits to

be Inspected by Existing Approaches.

Figure 6: Distribution of the Number of Commits to

be Inspected by Taper. Note that the X-axis scales are

different.

Table 4: Ablation on Different Confusing Patch Settings with Qwen-2.5-7B model.

Confusing Patch Construction MRR Recall@1 Recall@2 Recall@3 Avg. commits ∗

No confusing patches 0.455 32.3% 52.1% 61.7% 5.41
Neighbors-with-N=5 0.641 53.2% 67.9% 71.6% 1.74
Neighbors-with-N=10 0.651 54.5% 67.5% 71.5% 1.73
Neighbors-with-N=20 0.629 51.8% 67.1% 71.5% 1.91
Ramdomly-pick-10-samples 0.305 21.4% 33.4% 40.4% 30.66
Ramdomly-pick-20-samples 0.345 24.4% 38.4% 45.6% 21.18
Ramdomly-pick-40-samples 0.401 29.7% 44.0% 51.5% 17.15
∗ “Avg. commits” represents the average number of commits identified by Taper as the security patches for
each CVE, i.e., the average number of commits that need manual inspection.

that our approach is both robust and computationally efficient, re-
quiring only a small number of carefully selected confusing-patch
samples to achieve optimal results.

More concerning is the high number of false positives, with
an average of many commits identified per CVE indicating the
model’s limited ability to discriminate security patches without
proper confusing-patch samples. The effectiveness of our approach
is further evidenced by the dramatic reduction in false positives. Our
approach identifies an average of only 1.73 commits per CVE, show-
ing a dramatic reduction compared to 5.41 commits with the base-
line, 17.15 commits with random-40 sampling, 21.18 with random-
20, and 30.66 with random-10 sampling. This dramatic reduction
in false positives without sacrificing recall makes our approach
valuable for practical scenarios of security-patch localization. In
real industry, we need to check only less than one false positive
commit manually per CVE on average, while other approaches
require several dozens times of the labor force.

4.5 RQ4: Ablation Study on LLMs

In this RQ, we investigate the impact of using different LLMs for in-
stantiating Taper and the impact of fine-tuning LLMs with domain-
specific data, with results presented in Table 5.
Fine-tuning consistently and substantially outperforms prompt

engineering for small models. Our results demonstrate that fine-
tuning approaches consistently yield better results compared to
prompt engineering across all model sizes and architectures. Tak-
ing the LLaMa3.1-8b model as an example, the fine-tuned version
(LoRA-fine-tuning-with-N=10) achieves an MRR of 0.596 and Re-
call@1 of 48.6%, while the prompting-only version achieves lower

scores with an MRR of 0.456 and Recall@1 of 33.9%. Similarly, for
Qwen2.5-7b, fine-tuning improves MRR from 0.455 to 0.651 and
Recall@1 from 32.3% to 54.5%, representing relative improvements
of 40.9% and 64.7% respectively. This performance gap remains
consistent across all evaluation metrics, with the fine-tuned model
showing substantial improvements in higher-K recall values (e.g.,
Recall@5: 74.0% vs 69.8% for Qwen2.5-7b). While prompt engi-
neering can help guide models toward better performance, the im-
provements are modest compared to the substantial gains achieved
through fine-tuning. This finding is particularly evident in security-
patch localization tasks where subtle code patterns and complex
security implications need to be understood. Fine-tuning allows
models to learn these nuanced patterns through repeated exposure
to relevant examples, whereas prompt engineering alone strug-
gles to effectively encode the domain knowledge. The consistent
performance advantage of fine-tuned models emphasizes the im-
portance of task-specific model adaptation through fine-tuning for
specialized tasks such as security-patch localization.
Fine-tuning smaller models consistently and substantially

outperforms larger models without fine-tuning. Our experi-
mental results reveal a compelling finding: fine-tuned smaller mod-
els achieve significantly better performance than larger models re-
lying solely on prompting. Specifically, our fine-tuned Qwen2.5-7b
model achieves an MRR of 0.641 and Recall@1 of 53.2%, substan-
tially outperforming GPT-4o mini (MRR=0.501, Recall@1=37.6%)
despite the latter being a larger model. The performance advantage
of the fine-tuned model extends across all recall thresholds, with
particularly notable gains in early recall metrics (Recall@2: 67.9%
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Table 5: Ablation Results on LLMs.

Model Training MRR Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

GPT-4o mini Prompting 0.501 37.6% 56.7% 65.6% 70.2% 73.2%
LLaMa3.1-8b Prompting 0.456 33.9% 49.9% 57.6% 61.9% 64.6%
Qwen2.5-7b Prompting 0.455 32.3% 52.1% 61.7% 66.7% 69.8%
LLaMa3.1-8b LoRA-fine-tuned 0.596 48.6% 63.3% 66.2% 67.7% 68.8%
Qwen2.5-7b LoRA-fine-tuned 0.651 54.5% 67.5% 71.5% 73.3% 74.0%

vs 56.7%, Recall@3: 71.6% vs 65.6%). This finding demonstrates
that domain-specific fine-tuning can effectively compensate for
model-size limitations. The superior performance can be attrib-
uted to the fine-tuning process allowing smaller models to develop
specialized knowledge about security patch characteristics, while
larger models, despite their broader knowledge base, lack this tar-
geted expertise. This finding has important practical implications
for industrial deployment, as it suggests that organizations can
achieve better results using smaller, fine-tuned models, which are
more computationally efficient and cost-effective than using larger
foundation models’ API service out of the box.

5 Deployment and Lessons Learned

5.1 Deployment of Taper

We have deployed Taper at Huawei Cloud since October 2024 to lo-
cate security patches for disclosed OSS vulnerabilities continuously.
The system runs on two main parts: a processing system and an
LLM inference service. We use Huawei Cloud’s Container Engine, a
customized Kubernetes cluster service with 120 Docker containers
to process OSS commits in parallel. The LLM inference service runs
on four Huawei Ascend 910B GPU cards, each with 64GB of Mem-
ory. Taper has run for over 800 hours and processed more than
52,140 CVE vulnerabilities. The security team manually checks all
patches that Taper finds and adds them to Huawei Cloud’s vulner-
ability database. The verified patches are now key security assets
that support various vulnerability management services [23]. One
key use case is Huawei Cloud’s third-party vulnerability-mitigation
service, which tells cloud users whether their systems have been
affected by known security issues and suggests specific library
updates to fix these problems.

5.2 Lessons Learned

5.2.1 Costs Matter in Industrial Deployment. Beyond algorithm
innovations, our deployment experience reveals that both runtime
and monetary costs significantly impact the practical adoption of
security-patch localization in industrial settings.
Runtime costs matter. Our evaluation (Section 4.3) demonstrates
that traditional approaches [12, 31, 52] become computationally
prohibitive at scale. These approaches, which compute similarities
between CVE descriptions and repository commits, face significant
challenges given the exponential growth in both vulnerability re-
ports (over 40,000 CVE numbers in 2024 alone [47]) and repository
commits (Figure 5). To reduce runtime costs, we introduce version-
based filtering, a simple yet effective technique that reduces the

median number of commits requiring analysis from hundreds to
fewer than 50 per vulnerability, as shown in Figure 6.
Trade-offs between runtime costs and infrastructure support.

Our experience shows that infrastructure optimization can effec-
tively address efficiency requirements. Instead of relying on rate-
limited GitHub APIs [16], we maintain local mirrors of open-source
repositories. While this approach requires substantial storage re-
sources, the caching strategy enables Taper to process hundreds
of vulnerabilities continuously in production, demonstrating how
infrastructure investments can break runtime cost barriers.
Monetary costs matter. The cost considerations extend beyond
computational resources to model selection and deployment. Propri-
etary LLMs, while powerful, incur significant operational costs in in-
dustrial deployment. Our solution involves fine-tuning and deploy-
ing small-scale open-source LLMs locally, providing a more cost-
effective alternative while maintaining acceptable performance.
This approach demonstrates how careful consideration of monetary
constraints can guide technical decisions without compromising
system effectiveness.

5.2.2 There is a Need to Embrace Open-source LLMs and Data Engi-

neering for Software Development Our experience with Taper high-
lights two key advantages of LLMs over traditional deep-learning
approaches for industrial software engineering: (1) reduced de-
pendency on machine-learning expertise, and (2) alignment with
open-source ecosystems. Simultaneously, it underscores a paradigm
shift toward data-centric engineering in LLM-driven development.
LLMs enable typical software developers to bypass machine

learning expertise. Traditional deep-learning approaches [3] im-
pose significant barriers, requiring developers to master both com-
plexmachine learning concepts formodel-architecture selection [48]
and hyper-parameter tuning [62]. In contrast, LLMs provide a
more accessible alternative that aligns with existing software de-
velopment practices. This accessibility proves particularly valu-
able in industrial settings where software teams may lack spe-
cialized machine-learning expertise but possess strong software-
engineering capabilities.
A thriving open-source community simplifies the develop-

ment and deployment of LLMs. Our deployment experience
demonstrates that developers can effectively utilize LLMs by focus-
ing primarily on prompt engineering and dataset preparation, rather
than managing complex deep-learning model configurations. The
thriving open-source ecosystem, featuring powerful models and
mature deployment systems such as vLLM [29] and SGLang [65],
significantly reduces implementation barriers. These tools enable
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teams to achieve production-quality performance through fine-
tuning without extensive deep-learning expertise, supporting in-
dustrial priorities of rapid development and maintainable systems.
General-purpose models need adaptation for downstream

tasks. While LLMs offer significant advantages, they are not plug-
and-play solutions for specific software-engineering tasks [40, 41].
Our experiences (Table 4 and Table 5) demonstrate that successful
implementation still requires attention to data preparation [66] and
prompt engineering [27]. This finding suggests a paradigm shift:
while LLMs reduce the complexity of model development, they in-
crease the importance of data and prompt quality management [42].
This shift aligns well with traditional software engineering prac-
tices, where data-pipeline development and quality control are
familiar concepts.

5.2.3 There is a Need to Align Research Benchmarks with Industrial

Settings. To develop practical tools for software engineering, it is im-
portant to ensure the alignment between research benchmarks and
real-world industrial settings. Our industrial deployment revealed
a significant gap between research evaluation practices and real-
world settings in two major aspects. First, as demonstrated in Sec-
tion 2, confusion patches, which frequently occur in industrial set-
tings, are largely absent from current research datasets [12, 31, 52].
For example, existing approaches [31, 52] randomly selects 5,000
commits as negatives and one security commit as a positive, cir-
cumventing the confusing patches and the key challenge. Our expe-
rience shows that these confusion patches can significantly impact
tool effectiveness in practice, and yet their impact remains under-
evaluated in academic research. Second, we observe that the com-
mon practice of single-branch patch labeling in research datasets
poorly reflects industrial reality. Many software projects maintain
multiple stable branches, each receiving security patches with dif-
ferent commit IDs [51]. While existing research typically considers
only patches from a single branch as ground truth, our deployment
experience shows that valid patches often exist across different
branches. This mismatch between evaluation methodology and
practical requirements can lead to misleading conclusions about
tool effectiveness. These findings underscore the importance of de-
veloping more representative evaluation datasets better capturing
the complexity of industrial environments.

6 Related Work

6.1 Security-patch Localization for Disclosed

Vulnerabilities

Localization of security patches for disclosed vulnerabilities has
been extensively studied with various techniques applied, includ-
ing SVM [39], boosting [12], RankNet [52], Transformers [38], and
recently LLMs [31, 63]. PatchScout [52] and VCMatch [58] extract
features from CVE and code commits, ranking the most related code
commit among 5000 randomly selected commits. PatchFinder [31]
first applies an initial retrieval to decrease the number of candi-
date pairs of commits and CVEs by comparing cosine similarity of
their TF-IDF [8] vectors and their encoding in CodeReviewer [32],
and then utilizes a linear classifier on each pair’s encodings to pre-
dict how likely they are corresponding. However, all the preceding

approaches assume that the negative examples are randomly sam-
pled without considering confusing patches, being unrealistic for
practical security-patch localization [36].

Complementing existing work, Taper explores how to fulfill the
efficiency and robustness industrial requirements for security-patch
localization, validates the importance of differentiating confusing
patches, and aligns future research with real industrial settings.

6.2 Large Language Models for Software

Engineering

Large languagemodels (LLMs) has beenwidely adopted for software-
engineering tasks [19, 26, 41, 42] such as code generation [7, 17, 61]
and test generation [9, 40, 43, 46]. Existing work exploits LLMs in
two primary approaches. First, prompt engineering [35] carefully
designs prompts, i.e., the inputs to the LLMs, to tailor model re-
sponses for specific tasks [9, 59]. Recent studies have shown that
prompt engineering can significantly improve the performance
of LLMs on tasks such as code generation [13, 25, 30], and even
more complex tasks such as code explanation [1, 15] and security is-
sues [18]. Despite widely adopted due to its convenience, prompt en-
gineering falls short in tasks requiring in-depth comprehension and
knowledge beyond LLMs’ inherent ability on code-related tasks [49].
Second, fine-tuning LLMs on domain-specific datasets has emerged
as a potent approach to adapt general-purpose models to specialized
software-engineering tasks [67]. CodeLLaMa [44], as a representa-
tive with state-of-the-art performance, enhance LLaMa’s code gen-
eration ability with fine-tuning onmultiple downstream tasks. To re-
duce the costs of fine-tuning, parameter-efficient fine-tuning (PEFT)
approaches [20, 21, 34] have been particularly successful in adapting
models for complicated downstream applications and outperform
full fine-tuning (FFT) approaches in code-understanding tasks [4],
e.g., automated code review [37] and code summarization [45, 57].
Taper adopts LoRA [21] for fine-tuning LLMs on security-patch
localization, achieving satisfactory performance with low compu-
tational resources.

7 Conclusion

In this paper, we have reported our experiences and lessons
learned from developing and deploying Taper for security-patch lo-
calization. Compared to state-of-the-art approaches, Taper exploits
the version information in CVE descriptions to drastically reduce
the number of commits to inspect, and fine-tunes a pre-trained lan-
guage model using confusing patches that are temporally correlated
with the security patches, meeting the efficiency and robustness
requirements for industrial localization of security patches. The
evaluation results demonstrate the effectiveness of Taper, improv-
ing the MRR of security-patch localization from 0.229 to 0.641 while
avoiding inspection of over 90% unnecessary commits. We have
deployed Taper at Huawei Cloud and summarized three lessons
learned from developing and deploying Taper.
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