
Automated Visual Testing for Mobile Apps in an Industrial
Setting

Dezhi Ran
School of Computer
Science, Peking
University, China

dezhiran@pku.edu.cn

Zongyang Li
School of Software

and Microelectronics,
Peking University

China
lizongyang@stu.pku.edu.cn

Chenxu Liu
School of Computer
Science, Peking
University, China
lcx@stu.pku.edu.cn

Wenyu Wang
University of Illinois
Urbana-Champaign

USA
wenyu2@illinois.edu

Weizhi Meng
Alibaba Group, China
weizhi.mwz@alibaba-

inc.com

Xionglin Wu
Alibaba Group, China
xionglin.wxl@alibaba-

inc.com

Hui Jin
Alibaba Group, China
dingyuan.jh@alibaba-

inc.com

Jing Cui
Alibaba Group, China
qingling@taobao.com

Xing Tang
Alibaba Group, China
pingchou.pc@alibaba-

inc.com

Tao Xie∗
School of Computer
Science, Peking
University, China
taoxie@pku.edu.cn

ABSTRACT

User Interface (UI) testing has become a common practice for qual-
ity assurance of industrial mobile applications (in short as apps).
While many automated tools have been developed, they often do
not satisfy two major industrial requirements that make a tool de-
sirable in industrial settings: high applicability across platforms
(e.g., Android, iOS, AliOS, and Harmony OS) and high capability to
handle apps with non-standard UI elements (whose internal struc-
tures cannot be acquired using platform APIs). Toward addressing
these industrial requirements, automated visual testing emerges
to take only device screenshots as input in order to support au-
tomated test generation. In this paper, we report our experiences
of developing and deploying VTest, our industrial visual testing
framework to assure high quality of Taobao, a highly popular in-
dustrial app with about one billion monthly active users. VTest
includes carefully designed techniques and infrastructure support,
outperforming Monkey (which has been popularly deployed in
industry and shown to perform superiorly or similarly compared
to state-of-the-art tools) with 87.6% more activity coverage. VTest
has been deployed both internally in Alibaba and externally in the
Software Green Alliance to provide testing services for top smart-
phone vendors and app vendors in China. We summarize five major
lessons learned from developing and deploying VTest.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

∗Tao Xie is with the Key Laboratory of High Confidence Software Technologies (Peking
University), Ministry of Education, China, and is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513027

KEYWORDS

UI testing, visual testing, mobile testing, robotic testing

ACM Reference Format:

Dezhi Ran, Zongyang Li, Chenxu Liu, WenyuWang, Weizhi Meng, Xionglin
Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie. 2022. Automated Visual Test-
ing for Mobile Apps in an Industrial Setting. In 44nd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3510457.3513027

1 INTRODUCTION

With the flourish of mobile devices, people have been increasingly
dependent on these devices [40] in their daily work and life. En-
suring good user experiences of mobile applications (in short as
apps) has become unprecedentedly important. To find failures (e.g.,
crashes and display issues) in apps before their shipment to end
users, a practical way is to conduct automated User Interface (UI)
testing, where testing intends to mimic human interactions with
mobile devices. By employing automated UI testing, developers
can conveniently test different versions of their apps in batch on
multiple devices for a long period of time. This practice comple-
ments manual UI testing, which is usually needed for complex
functionalities but can be expensive and prone to mistakes.

Although numerous automated UI testing tools [3, 4, 8, 19, 27,
28, 30, 36, 55, 58] for mobile apps have been developed, they of-
ten do not satisfy two major industrial requirements that make a
tool desirable in industrial settings. The first requirement is high
applicability across platforms, where one can apply the tool with-
out modifications or with only small modifications across devices
of various platforms. While Android and iOS are the dominant
mobile operating systems globally, a great number of mobile oper-
ating systems have increasingly emerged to split the market. For
example, Microsoft has released Surface Duo [33] as one of its
major mobile platforms. Some countries have developed mobile
platforms [17, 24, 32] to avoid relying on overseas technologies.
The growing trend of diversified mobile platforms makes a uni-
fied testing solution increasingly desirable for the industry. The
second requirement is supporting non-standard UI elements in

https://doi.org/10.1145/3510457.3513027
https://doi.org/10.1145/3510457.3513027

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie

apps, where the internal structure of on-screen contents cannot
be obtained using platform APIs (e.g., UIAutomator [23] from the
Android framework). Non-standard UI elements are usually embed-
ded web UI [44] or customized UI elements. For many apps such
as Taobao [18], embedded web UI elements provide a convenient
way for online and prompt deployment of new features without
modifying the app client code or bothering users to update the app.
Mobile games [51] also heavily utilize customized UI elements from
graphic engines, which maintain their own internal UI structures.
Figure 1 shows one instance of non-standard UI elements in Taobao.
Many sophisticated UI testing tools [8, 13, 19, 20, 42] do not work
properly in such cases given that these tools cannot identify UI ele-
ments from on-screen contents through obtained on-screen content
structures (namely UI hierarchies).

To help satisfy the preceding industrial requirements, visual test-
ing tools [48, 52] emerge to leverage Computer Vision (CV) tech-
niques to identify UI elements from only screenshots, bringing two
major benefits. First, a visual testing tool tends to be non-intrusive
to the target device and is generally applicable to any platform,
saving considerable development and maintenance costs. Tool de-
velopers and quality assurance engineers need to maintain and
learn the usages of only a single tool. Second, a visual testing tool
complements automated testing tools that rely on UI hierarchies
obtained using platform APIs. Visual testing tools are capable of
handling non-standard UI elements, enabling more functionalities
to be explored and improving the testing effectiveness.

Given the usefulness of visual testing in industry practices, in
this paper, we report our experiences of developing and deploy-
ing VTest, our industrial automated visual testing framework, for
testing the Taobao app in Alibaba. Taobao is a highly popular e-
commerce app in China, with about one billion monthly active
users. In 2020, sales in Taobao reached 498.2 billion Chinese

Yuan in a single day, and the peak value of orders reached 583,000
transactions per second.

VTest addresses two major tasks, UI-Element Identification and
Test-Action Planning, along with providing the infrastructure sup-
port for automated visual testing. UI-Element Identification aims
to identify UI elements from raw screenshot images to provide
necessary information (e.g., boundaries) of UI elements for subse-
quent steps in the testing process. Test-Action Planning adopts a
specialized algorithm that decides on the action to perform (e.g.,
tapping a specific location on the screen) on the test device based on
the identified UI elements from the current screen (and optionally,
previous screens).

To support the preceding twomajorVTest tasks, we build a hard-
ware infrastructure with two major hardware components, inspired
by the progress of robotic testing [37]. In particular, we employ a
high-speed camera to capture screenshots for UI-element identi-
fication and a robotic arm to execute actions fired by test-action
planning. The hardware infrastructure provides full applicability
across platforms, i.e., the infrastructure is applicable across various
platforms without modification.

Considering the monetary costs of the hardware infrastructure,
we also build a software infrastructure based on only lightweight
platform APIs [15, 23, 45] from Android and iOS to support the
preceding two major VTest tasks. In particular, the software in-
frastructure invokes the screen capturing platform API to capture

screenshots for UI-element identification, and invokes the action
execution platform API to execute actions fired by test-action plan-
ning. Compared to the hardware infrastructure, the software in-
frastructure incurs lower monetary costs and provides lower (but
sufficiently high) applicability across platforms.

To instantiate VTest for building a practical solution in industry
settings, we report our experiences of selecting proper techniques
to address the two preceding tasks, respectively. For the task of
UI-element identification, we examine the effectiveness of existing
state-of-the-art identification techniques [7, 14, 38] on represen-
tative scenarios from Taobao. Our experiences show that there is
no one-size-fit-all solution to deal with various scenarios, and a
context-sensitive solution is desirable for UI-element identification
in practice. For the task of test-action planning, we design a random
strategy. Our evaluation results show that, even instantiated with
the simple random strategy, VTest outperforms Monkey [16] with
87.6% more activity coverage.

We have deployed VTest both internally in Alibaba and ex-
ternally in the Software Green Alliance to provide services for
top smartphone vendors and app vendors in China. Internally, in
Alibaba, VTest is used for everyday testing of a dozen popular
industrial apps, such as Taobao. VTest is also used to test parts of
Alipay, a highly popular payment app with over one billion users.
Specifically, we conduct user experience testing based on visual test-
ing with hardware infrastructure and conduct other testing tasks
based on visual testing with software infrastructure. Externally, we
have also started providing VTest as a public testing service in the
Software Green Alliance (SGA in short) [1]. SGA is formed by top
smartphone vendors (e.g., Huawei) and app vendors (e.g., Baidu,
Netease, and Tencent) to collaboratively assure the quality of pop-
ular industrial apps on massive devices. The service is improving
quality assurance for hundreds of popular industrial apps.

In summary, this paper makes the following main contributions:

• Raising awareness of the importance of visual testing for industry
practice and academic research.

• A practical automated visual testing framework, VTest instanti-
ated with carefully designed techniques and hardware/software
infrastructure support.

• Experiences and lessons learned from developing and deploying
VTest in Alibaba and the Software Green Alliance.

2 BACKGROUND ON NON-STANDARD

ANDROID UI ELEMENTS

We use the term of non-standard UI elements for UI elements whose
internal structures or contents cannot be obtained using the An-
droid accessibility APIs. These UI elements are usually represented
by Java classes outside the android.widget package. Most existing
testing tools rely on UIAutomator [23] (provided by the Android
framework) to capture on-screen contents, where UIAutomator
works by invoking the accessibility APIs upon each UI element on
the screen. Consequently, these tools are unable to know about the
inner contents of non-standard elements. The tools need inner con-
tents to learn about actionable regions (e.g., where can be clicked)
or useful attributes (e.g., texts) inside these UI elements. UI state
abstraction, if conducted by a testing tool, also becomes infeasible

Automated Visual Testing for Mobile Apps in an Industrial Setting ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

I (a)

I (b)

..
<node
class="android.widget.FrameLayout"
bounds="[0,75][1080,2265]">
<node
class="android.webkit.WebView"
bounds="[0,75][1080,2265]" />

</node>
..

..
<node
class="android.widget.RelativeLayout"
bounds="[0,1080][1080,2278]">
..
<node
text="()"
class="android.widget.Button"
bounds="[309,1161][520,1372]" />

..
<node
text="+/−"
class="android.widget.Button"
bounds="[59,2093][270,2278]" />

..
</node>

II (b)II (a)

Figure 1: An example of non-standard UI elements com-

pared with standard UI elements on Android.

Planning
Test-Action

Coordinates
Action type

Instructions

Screenshots

Events

Images

Hardware
Infrastructure

Robotic
Arm

High Speed
Camera

Physical
Device Pool

User Content

UI-Element
Identification

Software
Infastructure

Image
Processing

Cache

Repetition
Avoidance

API
Wrapper

Figure 2: Overview of the VTest framework.

in the cases where non-standard elements make up most of the UI
elements from the screen under analysis.

Figure 1 illustrates an example of non-standard UI elements on
Android. Figures 1-I(b) and 1-II(b) show the simplified UI hierar-
chies captured by UIAutomator corresponding to the screenshots in
Figures 1-I(a) and 1-II(a). Red boxes in Figures 1-I(a) and 1-II(a) in-
dicate the boundaries of UI elements (represented as nodes) shown
in Figures 1-I(b) and 1-II(b), respectively.

The Taobao app in Figure 1-I(a) usesWebView, an embedded web
browser module provided by Android. UIAutomator is incapable
to access the inner contents of WebView elements. Thus, only the
outer boundary of the WebView element is included in the UI
hierarchy as shown in Figure 1-I(b). On the contrary, another app
in Figure 1-II(a) uses standard Android UI elements, and the detailed
UI contents can be captured as shown in Figure 1-II(b).

3 INFRASTRUCTURE SUPPORT FOR VISUAL

TESTING

Automated visual testing satisfies industrial needs from two major
aspects. First, automated visual testing identifies UI elements from
only screenshots, making visual testing highly applicable without
modifications or with only small modifications across devices of
various platforms. Second, automated visual testing can identify the
internal structures of non-standard UI elements (see Section 2 for
an example), while platform APIs may not be able to provide such
information. To support automated visual testing, we build both the

iOS Android

Robotic
Control

Camera

Stylus Pen

Figure 3: A scene of our hardware infrastructure in action.

hardware infrastructure and software infrastructure, which have
respective different applicable scopes and deployment expenses.

3.1 Hardware Infrastructure with Robotic

Arms and Cameras

We adopt a robotic testing scheme, using high-speed cameras and
robotic arms to build the supporting hardware infrastructure for
automated visual testing. Figure 3 shows a scene of our hardware
infrastructure in action.
Screenshot Capturing. A high-speed camera captures, processes
(e.g., recognizes the screenshots from raw images), and transmits
the screenshots for subsequent UI-element identification. While
we adjust the positions of the camera and the mobile device under
test to make sure that the whole screen of the device is inside the
scope of the captured image, the surrounding region also appears
in the image. In practice, we place a white/black board under the
device to reduce the interference brought by the background and
use the OpenCV library [6] to segment devices’ screens from the
background.
Action Projection. VTest analyzes the screenshot and determines
the test action to be taken next. The action is represented as an ac-
tion type along with coordinates (e.g., click on (100,200)). To enable
the action execution on physical devices, we project (i.e., transform)
the action from the coordinate system in the screenshot to the co-
ordinate system in the real world. We adopt a (simplified) camera
calibration [57] technique and projection-based transformation [41]
to convert actions fired by VTest into real physical actions on de-
vices. As shown in Figure 3, we place small black blocks closely
around the edge of the device and record their positions in the real
world. After we properly pose the camera vertical to the device
screen, we capture a screenshot and use the OpenCV library to
locate the black blocks in the screenshot. With the coordinates of
the same object in the screenshot and the real world, we obtain a
matrix describing the one-to-one transformation from coordinates
in the screenshots to the real-world coordinates.
Action Execution. Consisting of a robotic control module (an XY
plotter [25]) and a stylus pen, the robotic arm interacts with device
screens physically. Upon receiving the coordinates, the robotic

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie

control module first drives the stylus pen to the corresponding
position. The module then lowers the pen to contact the screen
for a specific amount of time and lifts the pen off the screen. We
set the contact time period based on the type of the target action,
e.g., 50 millseconds to simulate a single tap and 200 milliseconds
for a long click. The robotic arm additionally supports other types
of actions such as swiping (by contacting the screen, moving to a
given direction for a specific distance, and leaving the screen).

3.2 Software Infrastructure with Low Costs

While the hardware infrastructure is promising for its general ap-
plicability to any platform, its hardware development and main-
tenance costs are high for deployment. To provide visual testing
with relatively low costs and with sufficient applicability across
platforms, we build a software infrastructure using only light-
weight platform APIs from UIAutomator [23] and Web Drive Agent
(WDA) [15] to be applicable on the Android and iOS platforms.
In particular, the software infrastructure relies only on the screen
capturing and action execution platform APIs. With only small
modification on the invocation of the two kinds of lightweight
platform APIs, the software infrastructure can be applicable across
platforms. The software infrastructure invokes the screen capturing
platform API to capture screenshots for UI-element identification,
and invokes the action execution platform API to execute actions
fired by test-action planning, supporting automated visual testing
with low costs and sufficient applicability.

4 UI-ELEMENT IDENTIFICATIONWITH

COMPUTER VISION

To instantiate VTest, we first identify UI elements from screen-
shots. By regarding UI-element identification from screenshots
as a domain-specific object detection task, we can leverage var-
ious object detection techniques including both deep-learning-
based [14, 21, 38, 39] and old-fashioned [7, 34, 35, 43] computer-
vision techniques to achieve this goal. Inspired by an empirical
study [7] conducted on the Rico dataset [11], we conduct an empir-
ical study on the effectiveness of existing UI-element identification
techniques for Taobao. The results show that existing different tech-
niques achieve the best effectiveness in different scenarios. We dive
into the principles of the techniques to explain their effectiveness,
and design an integrated technique to achieve the best effectiveness.

4.1 Study Setup

Object Detection Techniques.We select five representative ob-
ject detection techniques to evaluate their effectiveness for Taobao.
Three of the techniques are deep-learning-based while the other
two are old-fashioned, covering the mainstream techniques of ob-
ject detection.
• Faster-RCNN [39] is a two-stage anchor-based deep-learning-
based technique for object detection. It first uses a region proposal
network to extract regions of interest (called anchor boxes or
bounding boxes) that possibly contain objects, and then classifies
the inside objects with another neural network.

• YOLOv3 [38] is a one-stage anchor-based deep-learning-based
technique for object detection. Different from Faster-RCNN, YOLOv3

generates anchor boxes and classifies the inside objects at the
same time.

• CenterNet [14] is a one-stage anchor-free technique for ob-
ject detection. Instead of using anchor boxes, it detects objects
with the positions of their keypoints including corner and center
points.

• Xianyu [53] is an old-fashioned computer vision technique de-
veloped by Alibaba to reverse-engineer GUIs. We use its element
detection part only, where Xianyu binarizes, slices, and detects
the edges of UI elements.

• UIED [7] is an old-fashioned computer vision technique en-
hanced by deep-learning-based Optical Character Recognition
(OCR). It detects non-textual UI elements with old-fashioned
techniques and textual UI elements with EAST [59].
For Faster-RCNN, YOLOv3, and CenterNet, we use their pre-

trained models [7]. For UIED, we replace its OCR model with our
own.
UI Screen Collection in Taobao. To comprehensively examine
the effectiveness of the preceding object detection techniques, we
select five representative scenarios in Taobao to evaluate their ef-
fectiveness. In each scenario we manually collect 12 distinct screen-
shots.
• Messenger. The messenger scenario is one of the main function-
alities in Taobao, where users communicate with each other.

• Goods detail. The goods detail scenario demonstrates the goods
with images and texts, and is the most common scenario in
Taobao.

• Live streaming. The live streaming scenario is an increasingly
popular way for users to do online entertainment, where the
widgets are mixed with their background.

• Shop Front. The shop front scenario displays goods in a flow,
and is the major scenario for merchants to promote their prod-
ucts.

• Game. The game scenario is another complicated scenario where
the widgets are mixed with their background.

Effectiveness Metrics. We evaluate the correctness of the posi-
tions of the bounding boxes detected for the given screenshot 𝑠
against the set of ground-truth bounding boxes on 𝑠 . For each de-
tected bounding box 𝑏, we calculate the Intersection over Union
(in short as IoU, referring to the intersection area of the two boxes
over the their union area) with each of the ground-truth bounding
boxes on 𝑠 , and find 𝑏’s matched ground-truth bounding box as
the one that has the largest IoU with 𝑏 and this IoU is higher than
the predefined threshold. When we successfully find 𝑏’s matched
ground-truth bounding box, we determine 𝑏 as a True Positive
(TP). Otherwise, we determine 𝑏 as a False Positive (FP). We deter-
mine ground-truth boxes that are not matched with any detected
bounding box as False Negatives (FNs). We use Precision, Recall, and
F1-score to measure the effectiveness of the preceding techniques.
Precision = TP/(TP+FP) measures the fraction of detected bounding
boxes that really contain UI elements. Recall = TP/(TP+FN)measures
the capability of detecting as many UI elements as possible in the
screenshots. F1-score = 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙)
represents the identification accuracy comprehensively.

We manually collect the screenshots in the preceding scenarios
and use UIAutomator to obtain the bounding boxes of clickable UI

Automated Visual Testing for Mobile Apps in an Industrial Setting ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Effectiveness of various UI-element identification techniques on different scenarios.

Techniques CenterNet YOLOv3 Faster-RCNN Xianyu UIED

Scenario Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Messenger-0.5 0.347 0.311 0.328 0.917 0.098 0.177 0.517 0.282 0.365 0.184 0.114 0.141 0.603 0.532 0.565

Messenger-0.75 0.328 0.294 0.309 0.866 0.090 0.164 0.496 0.274 0.353 0.116 0.074 0.090 0.600 0.529 0.562

Messenger-0.95 0.308 0.278 0.292 0.021 0.003 0.006 0.050 0.030 0.038 0.001 0.001 0.001 0.600 0.529 0.562

Goods-0.5 0.341 0.328 0.334 0.675 0.072 0.130 0.527 0.351 0.422 0.266 0.167 0.205 0.748 0.306 0.434

Goods-0.75 0.339 0.327 0.333 0.636 0.067 0.122 0.459 0.305 0.367 0.241 0.150 0.185 0.738 0.301 0.428

Goods-0.95 0.321 0.310 0.315 0 0 0 0.004 0.003 0.003 0.029 0.020 0.024 0.677 0.278 0.394

Live-0.5 0.263 0.380 0.311 0.675 0.072 0.130 0.480 0.458 0.469 0.314 0.105 0.158 0.540 0.219 0.311
Live-0.75 0.257 0.371 0.304 0.662 0.087 0.154 0.430 0.413 0.422 0.249 0.085 0.127 0.512 0.216 0.304
Live-0.95 0.245 0.355 0.291 0 0 0 0.007 0.007 0.007 0.024 0.012 0.016 0.508 0.213 0.301

Shop-0.5 0.328 0.433 0.373 0.834 0.132 0.228 0.500 0.415 0.454 0.214 0.145 0.173 0.541 0.540 0.541

Shop-0.75 0.308 0.405 0.350 0.679 0.105 0.182 0.486 0.404 0.441 0.158 0.108 0.128 0.539 0.538 0.538

Shop-0.95 0.289 0.380 0.328 0.025 0.004 0.007 0.057 0.047 0.051 0.007 0.004 0.005 0.537 0.536 0.537

Game-0.5 0.281 0.429 0.340 0.6 0.092 0.159 0.490 0.513 0.501 0.168 0.106 0.130 0.572 0.214 0.311
Game-0.75 0.269 0.413 0.326 0.516 0.079 0.137 0.467 0.494 0.480 0.120 0.073 0.091 0.572 0.214 0.311
Game-0.95 0.238 0.363 0.287 0 0 0 0.011 0.013 0.012 0.007 0.003 0.004 0.572 0.214 0.311

Average-0.5 0.312 0.376 0.337 0.740 0.093 0.165 0.503 0.404 0.442 0.229 0.127 0.161 0.601 0.362 0.432
Average-0.75 0.300 0.362 0.324 0.672 0.086 0.152 0.468 0.378 0.413 0.177 0.098 0.124 0.592 0.360 0.429

Average-0.95 0.280 0.337 0.303 0.009 0.001 0.003 0.026 0.020 0.022 0.014 0.008 0.010 0.579 0.354 0.421

Notes: -0.5, -0.75, and -0.95 represent the IoU threshold being set to 0.5, 0.75, and 0.95, respectively. Prec. refers to the precision metric. F1 refers
to the F1-score metric (identification accuracy).

elements, serving as the ground truth of UI-element identification.
In addition, we manually include the bounding boxes of non-native
UI elements that are clickable. All screenshots are resized to 1080 ×
540 (50% of the original size) for efficiency.

We conduct UI-element identification using the selected tech-
niques on the selected scenarios, respectively.

4.2 Empirical Results and Analysis

In this section, we first present the empirical results, analyze the
reasons behind the results, and then propose an integrated UI-
element identification technique using the insights gained from the
analysis.

4.2.1 UI-Element Identification Accuracy. Table 1 shows the results
of different object detection techniques on different scenarios, from
which we have five observations.
Comparison amongdeep learning techniques.Among the three
selected deep-learning-based models, Faster-RCNN achieves the
highest average identification accuracy when the IOU threshold is
set to 0.5. CenterNet follows Faster-RCNN w.r.t. average identifica-
tion accuracy. Generally, the two-stage technique (Faster-RCNN)
achieves better effectiveness than one-stage techniques due to its
explicit stage of proposing bounding boxes. However, when setting
the IOU threshold to 0.95, the identification accuracy of Faster-
RCNN and YOLOv3 drops drastically, while the accuracy of Center-
Net only slightly drops. This result is due to the working principle
of the three models. Faster-RCNN and YOLOv3 are anchor-based
techniques, both of which require predefined scale and aspect ratio
of bounding boxes, i.e., these techniques assume the fixed size and
shape of detected bounding boxes. Since the size and shape of UI
elements vary in a large range, the anchor-based techniques can-
not precisely identify UI elements. In contrast, CenterNet adopts
an anchor-free detection schema to enable its precise UI-element
identification capability.

Generalization ability of deep learning techniques.When com-
pared to their original effectiveness in previous work [7], the ef-
fectiveness of the three models all drop substantially despite being
trained with over 66,000 screenshots from the Rico dataset [11].
YOLOv3 achieves the worst effectiveness among the three deep-
learning-based techniques. To validate its effectiveness given enough
training data, we collect 1000 UI screens in Taobao as the train-
ing dataset to fine-tune the YOLOv3 model. We use mean Average
Precision (mAP) to evaluate the effectiveness of YOLOv3 models.
The mAP metric is similar with F1-score. The mAP of the original
YOLOv3 trained on the Rico dataset is 0.02, while the mAP of the
YOLOv3 trained on our collected dataset is 0.75. The results show
that the variance of UI elements accounts for the effectiveness drop
of deep-learning-based techniques.

This result reflects that the high variance of UI elements makes it
hard for deep-learning-based techniques to generalize even trained
on a large dataset. Even in a single app such as Taobao, the UI
elements can change drastically across versions. If deep-learning-
based techniques fail to generalize, each time when the app is
updated, a new set of training data is required, raising additional
maintenance cost and limiting the application of deep-learning-
based techniques of UI-element identification in industry.
Comparison amongold-fashioned techniques. For old-fashioned
techniques, UIED substantially outperforms Xianyu. UIED, specially
designed for UI-element identification, achieves the state-of-the-art
identification accuracy due to its insight of separately detecting
text and non-text elements and involving a deep-learning-based
OCR model. Xianyu, another old-fashioned technique, fails to deal
with complicated UI screen patterns in real-world industrial apps.
Comparison betweendeep-learning-based andold-fashioned

techniques.UIED achieves the best effectiveness in most scenarios.
On average, deep-learning-based techniques outperform Xianyu
but are much worse than UIED. Since old-fashioned techniques do
not require training data, UIED is promising to be deployed as the

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie

Table 2: Classification of UI elements and their correspond-

ing identification techniques.

Bound

Inner.

Rich Simple

Clear old-fashioned old-fashioned
Mixed deep-learning-based None

Notes: Bound refers to the boundary of a UI element and its background.
Inner. refers to the internal structure of a UI element.

backbone UI-element identification technique for automated visual
testing for Taobao.
Effectiveness divergence in different scenarios. However, in
the live streaming scenario, UIED performs poorly and deep-learning-
based techniques outperform old-fashioned techniques. We inspect
these scenarios and find out that in these scenarios, UI elements are
mixed with the background images, which are impossible for old-
fashioned techniques to identify. We further inspect other scenarios
and similar situations also exist.

4.3 In-depth Analysis of the Effectiveness

Divergence

Based on our preceding empirical results, we find that the character-
istics of UI elements make UI-element identification distinguished
from generic object detection. From a detection perspective, we
categorize a UI element from two aspects: (1) is there a clear bound-
ary between the UI element and the background? (2) is the internal
structure of the UI element of high variety? The answers to the pre-
ceding two questions divide UI elements into four classes, depicted
in Table 2.

If a UI element has a clear boundary with its background, then
the UI element can be easily identified by old-fashioned techniques.
If the UI element is constant (i.e., have little change of its internal
structure), then deep-learning-based techniques can easily memo-
rize it in the training set, and generalize easily to only background
changes.

Inspired by our preceding empirical findings, we combine the
deep-learning-based and old-fashioned techniques in two steps to
obtain better identification accuracy with relatively low costs. First,
we run YOLOv3 and UIED in parallel to get two sets of identified
UI elements. Second, for each UI element 𝑢𝑖 identified by YOLOv3,
we search in the results from UIED. If 𝑢𝑖 is completely inside a UI
element from UIED or 𝑢𝑖 has no intersection with any UI element
from UIED, we add the UI element into the final set of identified UI
elements. Third, we remove a UI element identified by UIED if it is
too large (which we regard as a detection failure for UI elements
mixed with the background). Finally, we get the UI elements identi-
fied by the integration of deep-learning-based and old-fashioned
techniques. We choose YOLOv3 out of the three deep-learning-
based techniques because of its high precision, avoiding too many
false positives to burden the second step (merging the results from
two techniques). We choose UIED out of the two old-fashioned
techniques because of its dominating effectiveness over Xianyu.

CenterNet YOLOv3 Faster-RCNN Xianyu UIED
UI-Element Identification Techniques

0

1

2

3

4

Pr
oc

es
s

Ti
m

e
(s

)

Figure 4: Statistics of processing time for a single screenshot

of each technique.

5 EFFECTIVENESS OF VTEST WITH

UI-ELEMENT IDENTIFICATION

5.1 Test-action Planning Strategy

Although there exist sophisticated techniques for test-action plan-
ning [5, 19, 27, 30, 36, 42, 58], we find it difficult to straightfor-
wardly adapt them for two main reasons. First, some techniques
require information beyond on-screen contents, such as code cover-
age [5, 30, 42] and the internal IDs of UI elements. The requirement
breaks our assumption of using only screenshots as a source of
information. Second, for techniques that require knowing only
on-screen contents, they heavily rely on precise information (e.g.,
matching exact boundaries of UI elements) about the on-screen
contents to conduct state abstraction. While these techniques can
reliably obtain precise UI information through platform APIs, the
outputs of UI-element identification techniques are often prone to
errors and noises—even state-of-the-art techniques of UI-element
identification achieve only up to 60% detection accuracy as shown
in Table 1.

Consequently, we decide that at the current stage, a randomized
exploration strategy is adopted as the test-action planning strategy
for VTest. At each round, VTest randomly selects one UI element
from the identified UI elements and clicks on it. To simulate sys-
tem events, before each round, with probability 𝛼 = 0.005, VTest
restarts Taobao; with probability 𝛽 = 0.08, VTest performs a swipe
action toward a random direction; with probability 𝛾 = 0.08, VTest
goes back to the previous UI screen.

5.2 Infrastructure Support to Boost Efficiency

of VTest

In addition to the exploration strategy, we find that the image pro-
cessing can be time-consuming, taking seconds to process a single
screenshot. Figure 4 shows the processing time of each technique.
The set of screenshots is the same with those used in Section 4.

Faster-RCNN is the most time-consuming due to its two-stage
technique, taking 4.2 seconds on average to process a single screen-
shot. CenterNet, YOLOv3, and Xianyu are time-efficient, taking no
more than 0.5 seconds to process a single screenshot. YOLOv3 and
Xianyu are extremely fast, taking only 0.2 seconds on average to
process a single screenshot. UIED takes the second longest time,
about 2.2 seconds on average, to process a single screenshot.

Automated Visual Testing for Mobile Apps in an Industrial Setting ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Activity coverage and execution speed.

Baselines Activity Coverage Execution Rounds
Cache-Test 16.5%(+ 87.6%) 11,753
Comb-Test 15.1% 9,382

U-Test 14.8% 9,477
F-Test 12.2% 5,267
Y-Test 11.6% 17,493
X-Test 9.1% 15,925
C-Test 6.7% 17,003

Monkey 8.8% 108,000

To improve the efficiency and reduce the cost brought by image
processing, we cache the historical processing results, and use
perceptual hashing [26] to match screenshots. Every time when
VTest captures a new screenshot, we calculate its hash distance
with the historical screenshots. If the hash distance is larger than
𝜏 = 0.9, then we regard the new screenshot as the same with the
cached result. If a screenshot is cached, we reuse the identification
results instead of invoking a new UI-element identification process.

5.3 Evaluations of VTest for Taobao

Baseline Techniques. We compare the effectiveness of VTest
with different UI-element identification techniques. We denote
VTest instantiated with YOLOv3, Faster-RCNN, Xianyu, Center-
Net, and UIED as Y-Test, F-Test, X-Test, C-Test, and U-Test, re-
spectively. We denote VTest instantiated with the combination
of YOLOv3 and UIED as Comb-Test. To examine the effective-
ness of the infrastructure support, we denote VTest instantiated
with UIED and the cache strategy as Cache-Test. We also compare
VTest with Monkey, a state-of-the-practice tool. For Monkey, we
use its default settings, and set the throttle to 200 millseconds.
Environmental Settings. Since we use random testing as our
exploration strategy, we run each tool continuously for 6 hours
to reduce the random influence. To further compensate for the
potential influence brought by randomness, we run each test (a
single run lasting for 6 hours) for 3 times. We use the same tester
account for the same baseline techniques, and re-login the app
before each run to keep the testing environment as same as possible.
We run the tools on a Huawei P30 phone with Android 10 to collect
activity coverage information. Taobao has over 500 activities, and its
functionalities are rigorously organized according to activities, each
group of which ismaintained by a group of engineers. Consequently,
activity coverage is a good metric to examine the effectiveness of
automated testing tools for Taobao. We run the experiments on
a Ubuntu 20.04 machine with an Intel Core i7-8700 CPU and an
Nvidia Tesla V100 GPU.We run a daemon process that uses Android
Debug Bridge (ADB) to collect the name of the app activity that
the testing tool is exploring. If the activity name does not belong
to the targeted app, the daemon process automatically restarts the
targeted app to keep the exploration inside it.

5.4 Experimental Results

Table 3 shows the activity coverage achieved by VTest instantiated
with different techniques. We also list the number of execution
rounds (i.e., total actions taken) in 6 hours. U-test outperforms
Monkey with 68.2% relative improvement. The number of Monkey’s

execution rounds is approximately counted by dividing the 6-hour
test time with the throttle instead of counting the number of low-
level events that Monkey sends to the device. VTest fires 90%
fewer actions than Monkey does, indicating that widget-awareness
can drastically improve the effectiveness of automated testing for
Taobao.

Y-Test and F-Test outperform Monkey with 31.8% and 38.6%
relative improvement, respectively. Although Faster-RCNN has
higher UI-element identification accuracy than YOLOv3, it takes
much more time to process screenshots than YOLOv3, causing
to achieve similar activity coverage. These results show that it is
important to take the processing speed of UI-element identification
techniques into consideration when we apply these techniques to
automated visual testing.

Despite its fast processing speed, Xianyu is not desirable for
automated visual testing due to its extremely low detection accu-
racy. The poor effectiveness of C-Test indicates that identification
accuracy drawn from a not-end-to-end empirical study does not
assure good effectiveness for automated visual testing.

Combining deep-learning-based techniques and old-fashioned
techniques does not improve the activity coverage while the com-
bination can improve the identification accuracy. The UI elements
missed by UIED may not contribute to the improvement of the ac-
tivity coverage, and this result does not overthrow our conclusion
of using combined techniques.

Finally, the cache strategy improves the effectiveness with an
additional 19.4% activity coverage (87.6% in total), highlighting the
importance of infrastructure improvement in addition to algorithm
innovations.

6 LESSONS LEARNED FROM DEVELOPING

AND DEPLOYING VTEST

6.1 Deployment Experiences

Currently, we have deployed VTest both internally in Alibaba
and externally in the Software Green Alliance to provide testing
services for a large group of partners, including major mobile phone
manufacturers and app vendors in China.

6.1.1 Internal Deployment. We deploy VTest in Alibaba for
the quality assurance of many highly popular industrial apps such
as Taobao, Tmall, Taobao Live, Qianniu, Fliggy, Xianyu, Youku, and
DingTalk. In addition, in Ant, VTest is used for testing parts of
Alipay. Most of these apps each have over 100 million active users.
For example, Alipay1 is the most popular mobile payment app in
China with over one billion active users, while DingTalk2 is a
highly popular messenger app with over 500 million active users
across 19 million organizations to communicate for teamwork.

VTest provides two kinds of visual testing for internal usages.
First, leveraging the hardware infrastructure, VTest can precisely
test the runtime performance of the app under test on given de-
vices, especially those low-end/inexpensive devices. Running the
software infrastructure on these devices burdens their operating
systems (OSs), taking seconds or even failing to capture screenshots
or execute events with the software infrastructure. In addition, the

1https://intl.alipay.com/
2https://www.dingtalk.com/en

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie

software infrastructure overpasses the physical touch on devices
and executes events directly using APIs. In contrast, the hardware
infrastructure simulates the real touch like humans and can de-
tect issues found in actual usages, such as a click-response failure
with a screen protector pasted on the device screen. Being fully
non-intrusive, the hardware infrastructure can precisely monitor
the loading time and reaction time to reflect users’ authentic ex-
periences when using the app. Second, VTest with the software
infrastructure provides automated visual testing for the daily qual-
ity assurance (such as functionality testing) of iOS and Android
devices at a low cost.

6.1.2 External Deployment. We provide automated visual test-
ing as a public testing service for the Software Green Alliance
(SGA) [1]. SGA is a business alliance in China to coordinate top
vendors of mobile devices and apps to assure the quality of popular
industrial apps on popular devices (i.e., assuring the compatibility
of multiple apps on multiple devices). The members of SGA con-
sist of Huawei, Alibaba, Baidu, Tencent, and many other large IT
and Internet companies in China. The mobile device vendors in
the alliance provide a variety of devices including the latest and
recent device models, and the mobile app vendors test their recent
apps on the devices to ensure the compatibility of their apps on the
devices. This practice requires cross-platform applicability since
the diversified models of devices can be equipped with a modified
version of existing OSs or a completely new OS.

To provide a large-scale service, we deployVTest in a cloud-edge
fashion: we put UI-element identification and test-action planning
modules in Alibaba Cloud and devices under test in a physical com-
puter room. We use physical devices instead of emulators since
developing high-performance emulators is expensive and the be-
haviors on emulators may not truly reflect those on physical devices.
For the hardware infrastructure, due to the cost factor, currently,
we hold only one computer room to place the robotic arms and cam-
eras. We plan to increase the number of robotic arms and cameras
and seek better hardware equipment with lower cost and higher
efficiency than the current ones (XY Plotters).

6.2 Lessons Learned from Developing VTest

We next summarize five major lessons learned during our develop-
ment and deployment of VTest.

6.2.1 We should make the best shot with the best gun. We
expect desirable matching between problems and solutions. For
visual testing, the problem space includes testing against high-end
and low-end devices, along with functionality testing and user ex-
perience testing with different concerns and requirements. The
solution space includes the hardware infrastructure and software
infrastructure, with different levels of costs and benefits. We should
avoid the mismatch of problems and solutions, and pursue the
exact match of problems and solutions. For example, it is not cost-
effective to leverage the hardware infrastructure for functionality
testing, bringing in additional monetary and runtime costs. For user
experience testing, on the contrary, using the software infrastruc-
ture may not effectively discover failures that users may encounter
during app usage. When an action is executed (using the software
infrastructure) too fast compared to the regular usage by actual

users, the detected failures are false positives and hence not that
important. When testing on low-end/inexpensive devices, the run-
time overhead of the software infrastructure is relatively high, and
only the hardware infrastructure can adequately handle the testing
tasks on these devices.

In addition, we should balance the benefits and costs brought by
different techniques. We should avoid a one-size-for-all solution
and carefully determine the applicable scope for each technique.

Monetary costs matter. The hardware infrastructure is an ex-
citing solution to provide general applicability to any platform and
is dispensable for the user experience testing given its full non-
intrusiveness. However, in practice, it is expensive to adopt the
hardware infrastructure for large-scale usage (e.g., deploying hun-
dreds of robotic arms and high-speed cameras). To reduce hardware
costs, when testing multiple devices simultaneously (e.g., compati-
bility testing across platforms), we use only one set of robotic arms
and execute actions on each device one by one, avoiding purchasing
multiple sets of robotic equipment. We also develop the software
infrastructure for the consideration of monetary cost. Mobile plat-
forms have platform APIs available for screen capturing and event
execution, of which we make the best use to develop the software
infrastructure supporting automated visual testing. The software
infrastructure requires almost no equipment cost and retains high
cross-platform applicability for functionality testing.

Runtime costs matter. In addition to monetary costs, the run-
time costs during the testing are also not negligible. When testing
on high-end devices, the hardware infrastructure is too slow to
efficiently explore the functionalities of an app, while the software
infrastructure suffers when testing on low-end/inexpensive devices.
We should carefully select a proper infrastructure to minimize the
runtime costs for efficiency and effectiveness.

Amortizing costs helps. While automated visual testing in-
evitably incurs costs from image processing, by reusing the pro-
cessed results for other tasks, we can amortize the costs among
multiple tasks. For example, we store all the processed results pro-
duced during the automated visual testing and later use them for
detecting visual failures such as image rendering failures, image
loading failures, and violations of UI design principles (being our
ongoing work).

6.2.2 Modular tool development enables valuable reuse op-
portunities. To provide a concrete way of cost amortization, we
should be open-minded and enable the opportunities of reusing
modules of a tool for other tasks. VTest is originally designed
for automated visual testing and its modules are reused for three
other tasks. First, the hardware infrastructure is used to execute test
scripts for automating manual testing of user experience. Second,
the hardware infrastructure is also used for testing the interaction
between multiple devices testing cross-platform compatibility. The
two preceding reuses amortize costs of developing and deploying
the hardware infrastructure. Third, our ongoing effort is applying
the designed techniques of UI-element identification to review the
mini-programs (for detecting visual failures and violations of UI
design principles) in Taobao before their shipment to users, amor-
tizing the image processing costs.

6.2.3 There is a need to investigate individual cases. Con-
ventionally, people conduct empirical studies of various techniques

Automated Visual Testing for Mobile Apps in an Industrial Setting ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

and select the best one according to the average effectiveness. But
the best technique may not necessarily dominate other techniques
in all cases, and the average accuracy cannot reflect that some tech-
niques perform the best in certain cases while other techniques
perform the best in other cases. For example, similar to a finding
in a previous study [7], our empirical study shows that UIED, an
old-fashioned technique, achieves the highest average identification
accuracy. However, based on the investigation of individual cases,
we observe that neither old-fashioned techniques nor deep-learning-
based techniques dominate each other; in contrast, they comple-
ment each other in different cases. Such phenomenon suggests
a combination of preceding complementary techniques. Despite
the existence of multiple techniques, their combination still faces
challenges. To address these challenges, investigation of individual
cases is important to find the characteristics of different techniques
and their advantages for specific cases. Based on the investigation,
we design a combination mechanism of deep-learning-based and
old-fashioned techniques depicted in Section 4.

We should pursue the possibility to combine multiple techniques
instead of selecting the single best one according to the average
numbers, and to properly combine multiple techniques, we should
investigate individual cases in two aspects. First, we should check
the existence of complementarity among different techniques with
the investigation of individual cases. Second, if the complementarity
exists, rules need to be derived to determine under what conditions
a certain technique should be adopted over other techniques.

6.2.4 There is a need to embrace non-deep-learning-based
techniques and their integration. The preceding lesson learned
can be revisited here when multiple techniques under combination
include deep-learning-based techniques, which often can demon-
strate the best average effectiveness in recent studies [54]. But non-
deep-learning-based techniques can also achieve good effective-
ness, sometimes even surpassing deep-learning-based techniques as
shown in Table 1. Despite the easy-of-use nature of deep-learning-
based techniques in the inference phase, the training phase can
be expensive for industry deployment, requiring months to collect
tens of thousands of training data [56]. Our experiences show that if
apps evolve and the UI changes, an additional dataset is needed, in-
creasing the maintenance costs. In addition, even if we cannot solve
the problem entirely with non-deep-learning-based techniques, we
can divide the problems into pieces and solve them one by one. We
can use non-deep-learning-based techniques to solve a group of
problem pieces, making deep-learning-based techniques more de-
sirable in terms of cost and effectiveness for the remaining problem
pieces.

6.2.5 Improving infrastructure support’s efficiencymatters
besides algorithm improvement. In addition to algorithm inno-
vation, we should pay attention to infrastructure support. Wang
et al. [45] point out the importance of infrastructure for Android
testing, and we draw similar conclusions for automated visual test-
ing. For example, image processing is relatively expensive (in terms
of the runtime and monetary costs) and our infrastructure stores
the processing results for each screenshot. Before processing a new
screenshot, we first look up the cache using the perceptual hashing
match algorithm. If we detect a hash matching (the edit distance is
less than a threshold), the infrastructure returns the cached results

instead of conducting image processing (running the techniques
of UI-element identification) again. The caching mechanism can
generally improve the effectiveness and reduce the costs of any type
of automated visual testing. Take VTest with UIED as an example:
by caching the historical results, the infrastructure gains 19.4% ad-
ditional activity coverage improvement and reduces approximately
20% invocations of image processing. Since the infrastructure sup-
port is orthogonal to algorithm innovation, we should pay attention
to both of them and simultaneously improve them to obtain good
results.

7 RELATEDWORK

Automated UI testing formobile apps. There have been numer-
ous techniques proposed to achieve good testing effectiveness (e.g.,
high code coverage) through automated UI testing upon mobile
apps, predominantly on the Android platform. The history traces
back to Monkey [16], developed by the Android team and shipped
with every Android device. The tool simply samples and executes ac-
tions from a predefined probability distribution of action categories
without acquiring any information about the app UI. However, the
tool is extremely efficient and is shown to achieve good testing
effectiveness, even outperforming numerous research tools [9, 46].
Consequently, Monkey is still widely used in the industry. Other
sophisticated tools use various strategies for test-action planning,
e.g., building and querying a UI transition model [8, 13, 19, 20, 42],
systematically exploring UIs [4, 5, 29], and relying on randomized
evolution [28, 30, 50].
Visual testing. There exists a rich literature of leveraging com-
puter vision techniques in software testing [2, 10, 21, 22, 49, 52].
Sikuli [52] and JAutomate [2] leverage visual record-and-replay
techniques to enable testers to write visual test scripts that use
images instead of textual descriptions, benefiting the test automa-
tion. Choudhary et al. [10], He et al. [21, 22] use computer vision
techniques to test cross-browser compatibility. White et al. [48]
leverage a deep-learning model to detect widgets from images to
facilitate automated testing on open-source Java-based desktop
applications.
Robotic testing. Instead of simulating a user’s GUI actions via
internal OSs or GUI framework, robotic testing [12, 31, 37, 47]
leverages robotic arms to simulate GUI actions externally. Most
robotic testing frameworks and tools focus on automating test
execution. Dhanapal et al. [12] use robotic arms to test hardware
functionalities and performance of smart devices. Qian et al. [37]
leverage a capture-and-replay technique to generate visual test
scripts from videos and replay these scripts on IoT devices.

8 CONCLUSION

In this paper, we have reported our experiences from developing
and deploying VTest, an automated visual testing framework in an
industry setting, aiming to mainly address the industrial require-
ments for applicability across platforms and capability to handle
non-standard UI elements. We have developed integrated tech-
niques and the hardware/software infrastructure support to instan-
tiate VTest, outperforming state-of-the-practice tool Monkey with
87.6% coverage improvement. We have deployed VTest both inter-
nally in Alibaba and externally in the Software Green Alliance to

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu, Hui Jin, Jing Cui, Xing Tang, and Tao Xie

provide testing services for hundreds of highly popular industrial
apps. We have additionally summarized five major lessons learned
from development and large-scale deployment of VTest.

ACKNOWLEDGMENTS

Tao Xie’s work was partially supported by National Natural Science
Foundation of China (Grant No. 62161146003), a grant from Alibaba,
and XPLORER PRIZE.

REFERENCES

[1] 2021. Software Green Alliance. https://www.china-sga.com/sga/resource/
cloudtest.html

[2] Emil Alegroth, Michel Nass, and Helena H Olsson. 2013. JAutomate: A Tool for
System- and Acceptance-test Automation. In ICST.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI Ripping for Automated
Testing of Android Applications. In ASE.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-
tomated Concolic Testing of Smartphone Apps. In FSE.

[5] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In OOPSLA.

[6] Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer (2000).

[7] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object Detection for Graphical User Interface: Old
Fashioned or Deep Learning or a Combination?. In ESEC/FSE.

[8] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In OOPSLA.

[9] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In ASE.

[10] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. Webdiff:
Automated Identification of Cross-Browser Issues in Web Applications. In ICSM.

[11] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In UIST.

[12] Karthikeyan Balaji Dhanapal, K Sai Deepak, Saurabh Sharma, Sagar Prakash
Joglekar, Aditya Narang, Aditya Vashistha, Paras Salunkhe, Harikrishna GN Rai,
Arun Agrahara Somasundara, and Sanjoy Paul. 2012. An Innovative System for
Remote and Automated Testing of Mobile Phone Applications. In SRII.

[13] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-Travel Testing of Android Apps. In ICSE.

[14] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. Centernet: Keypoint Triplets for Object Detection. In ICCV.

[15] Facebook. 2018. WebDriverAgent. https://github.com/facebookarchive/
WebDriverAgent

[16] Google. 2021. Android Monkey. https://developer.android.com/studio/test/
monkey

[17] Alibaba Group. 2021. AliOS. https://aliosthings.io/#/
[18] Alibaba Group. 2021. Taobao. https://taobao.com
[19] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,

Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI Testing of Android
Applications via Model Abstraction and Refinement. In ICSE.

[20] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-automation for Large-scale Dynamic Analysis
of Mobile Apps. In MobiSys.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. In ICCV.

[22] Meimei He, Guoquan Wu, Hongyin Tang, Wei Chen, Jun Wei, Hua Zhong, and
Tao Huang. 2016. X-Check: A Novel Cross-Browser Testing Service Based on
Record/Replay. In ICWS.

[23] Xiaocong He. 2018. Python wrapper of Android uiautomator test tool. https:
//github.com/xiaocong/uiautomator

[24] Huawei. 2020. Harmony OS. https://www.harmonyos.com/en/
[25] RR Jegan, E Gnanasundaram, M Gowtham, R Sivanesan, and D Thiyagarajan.

2018. Modern Design and Implementation of XY Plotter. In ICICCT.
[26] Evan Klinger. 2013. Perceptual Hashing. http://www.phash.org/
[27] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A

Deep Learning-Based Approach to Automated Black-box Android App Testing.
In ASE.

[28] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In ESEC/FSE.

[29] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In FSE.

[30] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In ISSTA.

[31] Ke Mao, Mark Harman, and Yue Jia. 2017. Robotic Testing of Mobile Apps for
Truly Black-Box Automation. IEEE Software (2017).

[32] Ltd. Meiwang Technology Co. 2021. Flyme. https://www.flyme.cn/
[33] Microsoft. 2020. Surface Duo. https://www.microsoft.com/en-us/surface/devices/

surface-duo?activetab=overview
[34] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and

Denys Poshyvanyk. 2020. Machine Learning-Based Prototyping of Graphical
User Interfaces for Mobile Apps. TSE (2020).

[35] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUI (T). In ASE.

[36] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement Learning Based Curiosity-Driven Testing of Android Applications.
In ISSTA.

[37] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. RoScript:
A Visual Script Driven Truly Non-Intrusive Robotic Testing System for Touch
Screen Applications. In ICSE.

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only
Look Once: Unified, Real-Time Object Detection. In CVPR.

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-TimeObject DetectionWith Region Proposal Networks. InNeurIPS.

[40] StatCounter. 2021. Mobile Market Share Worldwide. https://gs.statcounter.com/
platform-market-share/desktop-mobile-tablet/worldwide

[41] Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. 1993. Introduc-
tion to linear algebra. Wellesley-Cambridge Press Wellesley, MA.

[42] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI
Testing of Android Apps. In ESEC/FSE.

[43] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon,
and Amy J Ko. 2018. Rewire: Interface Design Assistance from Examples. In CHI.

[44] Android Development Team. 2011. Webviewclient hooks list. http://developer.
android.com/reference/android/webkit/WebViewClient.html

[45] Wenyu Wang, Wing Lam, and Tao Xie. 2021. An Infrastructure Approach to
Improving Effectiveness of Android UI Testing Tools. In ISSTA.

[46] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools
in Industrial Cases. In ASE.

[47] Ragnar Wernersson. 2015. Robot Control and Computer Vision for Automated Test
System on Touch Display Products. Master’s thesis.

[48] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving Random
GUI Testing with Image-Based Widget Detection. In ISSTA.

[49] Zhen Xu and James Miller. 2018. Cross-Browser Differences Detection Based on
an Empirical Metric For Web Page Visual Similarity. TIT (2018).

[50] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing
the Android Apps with Intent-Filter Tag. In MoMM.

[51] Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen,
Yinxing Xue, and Jianjun Zhao. 2021. An Empirical Study of GUIWidget Detection
for Industrial Mobile Games. In FSE.

[52] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: Using GUI
Screenshots for Search and Automation. In UIST.

[53] Chen Yongxin, Zhang Tonghui, and Chen Jie. 2019. UI2code.
https://laptrinhx.com/ui2code-how-to-fine-tune-background-andforeground-
analysis-2293652041/

[54] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, and Qianxiang
Wang. 2022. Automated Assertion Generation via Information Retrieval and Its
Integration with Deep Learning. In ICSE.

[55] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated Test Input Generation for Android: Are We
Really There yet in an Industrial Case?. In FSE.

[56] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
In CHI.

[57] Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration.
TPAMI (2000).

[58] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android:Towards Getting There in an Industrial Case. In ICSE-SEIP.

[59] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and
Jiajun Liang. 2017. East: An Efficient and Accurate Scene Text Detector. In CVPR.

https://www.china-sga.com/sga/resource/cloudtest.html
https://www.china-sga.com/sga/resource/cloudtest.html
https://github.com/facebookarchive/WebDriverAgent
https://github.com/facebookarchive/WebDriverAgent
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://aliosthings.io/#/
https://taobao.com
https://github.com/xiaocong/uiautomator
https://github.com/xiaocong/uiautomator
https://www.harmonyos.com/en/
http://www.phash.org/
https://www.flyme.cn/
https://www.microsoft.com/en-us/surface/devices/surface-duo?activetab=overview
https://www.microsoft.com/en-us/surface/devices/surface-duo?activetab=overview
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
http://developer.android.com/reference/android/webkit/WebViewClient.html
http://developer.android.com/reference/android/webkit/WebViewClient.html
https://laptrinhx.com/ui2code-how-to-fine-tune-background-andforeground-analysis-2293652041/
https://laptrinhx.com/ui2code-how-to-fine-tune-background-andforeground-analysis-2293652041/

	Abstract
	1 Introduction
	2 Background on Non-standard Android UI elements
	3 Infrastructure Support for Visual Testing
	3.1 Hardware Infrastructure with Robotic Arms and Cameras
	3.2 Software Infrastructure with Low Costs

	4 UI-element identification With Computer Vision
	4.1 Study Setup
	4.2 Empirical Results and Analysis
	4.3 In-depth Analysis of the Effectiveness Divergence

	5 Effectiveness of VTest with UI-element identification
	5.1 Test-action Planning Strategy
	5.2 Infrastructure Support to Boost Efficiency of VTest
	5.3 Evaluations of VTest for Taobao
	5.4 Experimental Results

	6 Lessons learned from developing and deploying VTest
	6.1 Deployment Experiences
	6.2 Lessons Learned from Developing VTest

	7 Related Work
	8 Conclusion
	References

