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Abstract

Tests for feature-based UI testing have been indispensable for en-
suring the quality of mobile applications (apps for short). The high
manual labor costs to create such tests have led to a strong interest
in automated feature-based UI testing, where an approach automati-
cally explores the App under Test (AUT) to find correct sequences
of Ul events achieving the target test objective, given only a high-
level test objective description. Given that the task of automated
feature-based Ul testing resembles conventional Al planning prob-
lems, large language models (LLMs), known for their effectiveness
in Al planning, could be ideal for this task. However, our study
reveals that LLMs struggle with following specific instructions for
Ul testing and replanning based on new information. This limita-
tion results in reduced effectiveness of LLM-driven solutions for
automated feature-based Ul testing, despite the use of advanced
prompting techniques.
Toward addressing the preceding limitation, we propose GUARDIAN,

a runtime system framework to improve the effectiveness of auto-
mated feature-based UI testing by offloading computational tasks
from LLMs with two major strategies. First, GUARDIAN refines Ul
action space that the LLM can plan over, enforcing the instruc-
tion following of the LLM by construction. Second, GUARDIAN
deliberately checks whether the gradually enriched information
invalidates previous planning by the LLM. GUARDIAN removes the
invalidated UI actions from the UI action space that the LLM can
plan over, restores the state of the AUT to the state before the
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execution of the invalidated Ul actions, and prompts the LLM to
re-plan with the new UI action space. We instantiate GUARDIAN
with ChatGPT and construct a benchmark named FesTIVAL with 58
tasks from 23 highly popular apps. Evaluation results on FESTIVAL
show that GUARDIAN achieves 48.3% success rate and 64.0% average
completion proportion, outperforming state-of-the-art approaches
with 154% and 132% relative improvement with respect to the two
metrics, respectively.
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1 Introduction

To ensure the high quality of mobile applications (apps for short),
feature-based UI testing [61] focuses on validating the core func-
tionalities of the App Under Test (AUT), and is indispensable [27,
30, 31, 46] yet often incurs significant manual costs [31, 50, 61, 62].
To reduce manual costs, it is a long-sought goal to automatically
generate feature-based Ul tests directly from test objectives [27],
denoted as automated feature-based UI testing in this paper. Given
an AUT and a test objective as inputs, automated feature-based
UI testing explores the AUT to find a sequence of UI actions (i.e.,
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Ul events) to achieve the test objective. In particular, automated
feature-based UI testing sequentially selects one UI action on a Ul
screen, triggers the Ul action on the AUT, and selects the next Ul
action on the new UI screen until the test objective is achieved.
Consequently, automated feature-based UI testing is inherently a
sequential planning problem [7, 57, 63], which has been effectively
tackled by large language models (LLMs) [14, 18, 52, 57, 70, 75].

Despite the promising effectiveness of LLMs for sequential plan-
ning problems, state-of-the-art approaches of LLM-based feature-
based UI testing [52, 70, 75] are shown to achieve low effectiveness
according to our empirical investigation (Section 4.2) and one may
hypothesize two likely contributing factors for the low effectiveness.
First, LLMs may struggle to comprehend the content or environ-
ment (i.e., the UI elements) within their operational scope. Second,
LLMs may not be skilled at formulating planning strategies specific
to such exploration tasks (i.e., feature-based UI testing).

To empirically investigate the preceding hypothesized contribut-

ing factors, in this paper, we conduct a preliminary study (Section 2)
to produce two findings. First, interestingly, our study results (Sec-
tion 2.1) contradict the first hypothesized factor, revealing that
LLMs are, in fact, quite capable of comprehending UI content. LLMs
correctly select UI actions with over 95% accuracy, even amidst
distracting elements. Second, our study results (Section 2.2) show
that the primary cause of failure in existing approaches is the sec-
ond factor: inadequate planning strategies. This issue encompasses
two major aspects of challenges discussed below, as revealed in our
analysis (whose details are in Section 2.2).
Challenges. Failing to follow domain-specific task instructions. While
LLMs can be experts in understanding UI content, LLMs lack do-
main knowledge in Ul exploration [63, 70] and existing approaches
incorporate Ul-testing-specific instructions into prompts to help.
However, LLMs fail to follow these instructions, leading to low ef-
fectiveness. As detailed in our preliminary study, despite Droidbot-
GPT [70] using explicit instruction prompts to avoid selecting al-
ready selected actions, 36% of the planned actions are simply re-
peating historical actions.

Failing to replan based on new information. The task of automated
UI testing involves highly dynamic, real-time exploration of the
AUT, given the fact that the same functionality can be implemented
in various ways in different apps. As exploration progresses, newly
uncovered information can invalidate previously planned Ul actions.
Figure 5 presents an example on the Quizlet app, where an LLM is
instructed to activate the night mode. On the front page, the LLM
chooses to click the search button to pursue a shortcut setting of
the night mode. While finding that the search tab cannot achieve
its previous planning purpose, the LLM fails to replan with the new
information, stuck in repeating clicking the search tab.

Addressing the preceding challenges with advanced prompt en-
gineering is not sufficient, based on both theoretical and empiri-
cal evidence. First, empirical findings [11, 44] suggest that trans-
former LLMs often reduce multi-step compositional reasoning into
linearized subgraph matching, rather than developing systematic
problem-solving skills. This implies that, in tasks like UI testing,
where multi-step reasoning is crucial, the performance of LLMs is
likely to decline as task complexity increases [11]. Second, stud-
ies [23] have shown that pretrained language models inherently
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Figure 1: Computation Offloading from LLMs to external
systems.

possess a statistical lower bound on hallucination rates, indepen-
dent of their architecture or the quality of their training data. This
makes them prone to generating inaccurate information, which
can undermine their reliability in critical tasks. Last, LLMs have
been empirically demonstrated to be less effective in following
multiple or fine-grained instructions [20, 22, 56]. This limitation
becomes even more significant in scenarios involving long contexts,
where the models’ ability to accurately follow instructions tends to
decline [26, 32].

To fundamentally tackle the preceding theoretical and empiri-
cal limitations of prompt engineering, we introduce computation
offloading [9, 51] to LLM-based UI exploration, inspired by the in-
sight that some tasks and instructions in automated feature-based
Ul testing can be formulated as tasks computable in an external
system. These tasks represent refinement strategies of the action
space based on historical exploration. For example, the instruction
of avoiding repetitive action selection used by Droidbot-GPT [70]
can be written as a function that removes Ul actions if they appear
in historical actions. As shown in Figure 1, by offloading such com-
putation tasks from LLMs to external systems, we can reduce the
task complexity as well as the length of contexts, which circumvent
the theoretical limitations caused by computational complexity and
empirical limitations caused by multiple instructions following and
long context handling.

To effectively offload the computation workloads from LLMs, in
this paper, we propose GUARDIAN, the first and general runtime
framework for LLM-based Ul exploration. Figure 2 presents the sys-
tem architecture, consisting of a domain knowledge loader, memory,
and execution engine. The domain knowledge loader consists of
optimizers, validators, and error handlers. The optimizers refine
the action space, the validators assess the need for replanning, and
the error handlers reset the AUT for replanning. This approach is
closely tied to the nature of UI exploration, where instructions can
be offloaded to the runtime framework and viewed as constraints
on the action space. By externally executing these constraints, disal-
lowed actions are removed from the context, ensuring that the new
context adheres to the instructions, thus making the action space
more concise and the set of instructions more manageable. Imple-
menting this step requires specific programs, corresponding to the
drivers in our execution engine. The memory component is crucial
for both refining the action space and facilitating replanning. The
memory component keeps a record of blocked actions, aiding in the
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adjustment of the action space. Additionally, the memory compo-
nent maintains a historical context that includes all UI states visited
and LLM perceptible context—the refined context that LLM can
access based on the information available at the time of planning.
This historical data is essential for effectively replanning allowing
the framework to restore previous states and adjust the course of
action as needed. The execution engine includes a parser, an LLM
driver, and a Ul driver. The LLM driver manages the interaction
with the LLM, receiving its responses, while the UI driver is respon-
sible for executing actions on the AUT and collecting the UI action
space data. The parser plays a key role in processing both the LLM
responses and the Ul action space information, coordinating with
the memory component to manage the flow of instructions and
ensure they are applied correctly within the refined action space.

To evaluate the effectiveness of GUARDIAN, we instantiate GUARDIAN

with ChatGPT [40] and construct a benchmark named FESTIVAL in-
cluding 58 feature-based UI tests from 23 highly popular industrial
Android apps [66] that are widely used in previous work [5, 10, 65—
67]. We compare GUARDIAN with three state-of-the-art LLM-based
approaches including Droidbot-GPT [70], ReAct [75], and Reflex-
ion [52]. Evaluation results on FESTIVAL show that GUARDIAN suc-
cessfully generates 48.3% fully correct tests and completes 64.0% of
a test on average, substantially outperforming the state-of-the-art
baseline approaches with respect to the two metrics with 154%
and 132% relative improvement, respectively. We also conduct de-
tailed experiments to investigate the effectiveness of the individual
algorithm designs and their contributions to the effectiveness of
GUARDIAN.

In summary, this paper makes the following main contributions:

e An empirical study revealing the poor planning strategies
of LLM-based approaches in automated feature-based Ul
testing.
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o A publicly available runtime framework GUARDIAN [45] for
effectively offloading computations from LLMs with domain
knowledge.

e Extensive evaluations demonstrating the effectiveness of
GUARDIAN.

2 Preliminary Study

While LLM-based approaches have been successfully applied to
sequential planning problems [52, 70, 74, 75], our evaluation in
Section 4.2 shows that ReAct [75], Reflexion [52], and Droidbot-
GPT [70], three state-of-the-art LLM-based approaches, all exhibit
low effectiveness when applied to automated feature-based UI test-
ing. This observation leads us to investigate the underlying causes
of their low effectiveness. We propose two primary hypotheses
to explain the low effectiveness observed: First, LLMs may lack
the capability to understand UI content, which is essential for suc-
cessful automated feature-based UI testing. Second, LLMs might
comprehend UI content adequately, but the prompting strategies
employed in existing LLM-based approaches may not be function-
ing as effectively as intended.

Consequently, we further conduct a detailed analysis to investi-
gate the following two research questions:

e RQ1: How effectivecan LLMs comprehend UI content?
e RQ2: How effective are the prompting strategies in existing
approaches in terms of achieving their intended outcomes?

2.1 RQ1: UI Comprehension Capability of LLMs

This section investigates the root cause of the limited effectiveness
of LLM-based approaches in automated feature-based UI testing,
specifically focusing on whether this problem stems from LLMs’
inadequate comprehension of UI content. For instance, Droidbot-
GPT’s initial evaluation on simpler open-source apps may not ade-
quately represent its performance with more complex, industrial
apps. To address this problem, our experiments are designed to as-
sess both the comprehension capability of LLMs for UI content and
their robustness against the increasing complexity of UI elements.
Experiment Setup. Our experimental framework centers around
the UI action selection task on the MoTIF dataset [5]. In this task,
LLMs are prompted to select one and only one UI element from a
list that would fulfill a given low-level instruction. The instructions,
derived from natural language descriptions accompanying the Mo-
TIF dataset, are carefully selected to exclude vague annotations like
“click a button”. From the 28 tasks in the MoTIF dataset, we extract
60 specific instructions for our experimental dataset. The length of
candidate Ul elements to select from ranges from 3 to 109, with the
average length being 28.5 and the standard deviation being 20.2.
To further test the LLMs’ robustness, we augment the UI ele-
ment list with irrelevant elements sourced from different mobile
applications, thereby creating a more challenging and noisy envi-
ronment for the LLMs to navigate. Suppose the length of candidate
Ul elements to select from is n. We add 50%, 100%, and 200% noisy
Ul elements. In other words, after adding the noisy UI elements
under the three conditions, the length of candidate UI elements to
select from becomes 1.5n, 2n, 3n, respectively.
Study results of UI comprehension capability. Table 1 shows
the UI action selection accuracy of different models. In our 60-task
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Table 1: Effectiveness of UI Content Comprehension.

Model Original ~ +50% Noise  +100%  +200%

Seq2Act 80.0% - - -
GPT-3.5 96.7% 96.7% 96.7% 93.3%
GPT-4 98.3% 96.7% 96.7% 96.7%

assessment, GPT-3.5 achieved an accuracy of 96.7%, while GPT-4
achieved an impressive accuracy of 98.3%, 1.23 times the perfor-
mance of the leading non-LLM-based approach Seq2Act, which is
fine-tuned on the MoTIF dataset. Our inspection of the only failed
case of GPT-4 further confirms the high effectiveness of LLMs for
UI comprehension. The ground-truth Ul element in the failed task is
a searchField given by the MoTIF dataset. GPT-4 selected a “wrong”
Ul element, the search icon, different from the ground-truth UI
element. However, clicking on either of the two UI elements on the
app can achieve the instruction “open the search field icon”. Con-
sequently, we suspect that the failed case is not due to the limited
effectiveness of LLMs, but the limitation of the MoTIF dataset.

In terms of robustness against noisy UI elements and scale of
Ul element candidates, LLMs showed a relatively small decrease in
performance, dropping from 96.7% to 93.3% accuracy even with the
addition of 200% noisy elements. This slight decline, considering
the potential semantic relevance of the added noisy elements, un-
derscores the LLMs’ resilience to increased Ul content complexity.

Answer to RQ1: LLMs demonstrate expert-level comprehen-
sion of UI content and maintain robust performance, indicating
that UI comprehension ability is not the limiting factor in the
effectiveness of current LLM-based approaches.

2.2 RQ2: Unintended Outcomes against
Prompting Strategies

Acknowledging the effectiveness of LLMs in understanding UI con-
tent, our next focus shifts to examining the effectiveness of complex
prompting strategies. Specifically, we aim to assess whether these
strategies are accurately followed by LLMs and if they indeed yield
the intended outcomes. This investigation is conducted through a
combination of quantitative and qualitative analyses to provide a
comprehensive understanding of the efficacy of prompting strate-
gies in the context of automated feature-based UI testing.
Experiment Setup. The experiment setup for this research ques-
tion is the same as the setup in Section 4.1.

Quantitative analysis of instruction following. Our analysis
begins with Droidbot-GPT, designed to follow a specific instruction:
the LLM should not select any Ul actions that have already been
chosen in previous trials. Droidbot-GPT presents the LLM with
a list of previously selected UI actions and instructs it to avoid
them. Compliance with this instruction is assessed by tracking the
number of times each Ul element is selected; any repeated selection
of a UI element is considered a violation.

Unfortunately, as depicted in Figure 3, violations of this instruc-
tion are frequent. Out of 449 different UI elements, 288 UI action
selections (approximately 64% of all selections) adhere to the in-
struction. There are numerous instances of violations: 88 UI action
selections (20%) involve a Ul element being selected more than
twice.
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start the app AccuWeather

click view "Open navg. drawer"
click view with text "Settings"
click view with text "F, mph, in"
click view with text "F, mph, in"
click view with text "F, mph, in"
click view with text "Manage Notif"

go back
click view with text "Edit Location"

click view with text "Manage Notif"

Figure 4: Action Selection of Droidbot-GPT on AccuWeather.

Figure 4 presents an example of such violations. Not only does
ChatGPT violate the instruction of not selecting an already selected
Ul element, but the violation happens continuously two times when
clicking view with text “F, mph, in”, and happens continually three
times when clicking view with text “Locations”.

Consequently, the prompting strategy of Droidbot-GPT does

not actually work as intended, explaining the poor effectiveness of
Droidbot-GPT on FESTIVAL.
Qualitative analysis of plan adaptation. Among the leading
approaches, Reflexion uniquely incorporates a mechanism to an-
alyze and adapt from previous failed trials. This ability to modify
strategies based on past failures contributes significantly to its high
success rate. Given that a single functionality can be implemented
in various ways across different applications [31], the capacity to
adjust initial plans in response to new insights gained from interac-
tion with the Application Under Test (AUT) is vital for enhancing
the success of automated feature-based UI testing.

However, the observed unintended behaviors in Droidbot-GPT
raise questions about the efficacy of Reflexion’s reflection mech-
anism. Unlike the straightforward quantification possible with
Droidbot-GPT’s instruction adherence, evaluating Reflexion’s adap-
tive strategies requires a more nuanced approach. Therefore, we
conducted a manual inspection of a sample of Reflexion’s logs. In
one notable instance with the Quizlet app, following a failed trial,
Reflexion generated a specific reflection:
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Figure 5: A motivating example of enforcing instruction fol-
lowing and plan adjustment with Ul action space refinement.

Reflection: In my previous attempts, I failed to realize that the
necessary Ul element may not be included in the given list. This
led to a repetitive and ineffective approach. Next Plan: I should
seek additional information or a different set of UI elements to
identify the night mode toggle or switch. This could involve
checking the app’s settings menu, searching for user guides or
tutorials, or reaching out to customer support for guidance...

Despite Reflexion’s mechanism to generate alternative strategies
following a failed attempt, in subsequent trials the LLM repeatedly
selects the same UI action that led to the previous failure. This
behavior indicates a violation of the intended reflection process and
results in repeated unsuccessful attempts to complete the task. This
pattern highlights a critical gap in the LLM’s ability to effectively
adapt and learn from past interactions, undermining the potential
benefits of Reflexion’s adaptive planning capability.

Answer to RQ2: Prompting-based strategies, including both
explicit instructions and adaptive mechanisms, fail to consistently
guide LLMs to follow the outlined instructions or adaptations.
This inconsistency is the key factor contributing to the observed
low effectiveness.

2.3 Motivating Example

In this section, we use a motivating example to illustrate why ex-
isting approaches fail, and how the failure can be overcome by
transforming the instructions into action space refinement and
replanning with restoration.

Consider the task of enabling night mode in the Quizlet app, as
depicted in Figure 5. Initially, the LLM conceives a plan, hypothe-
sizing that the app’s search function can be used to enable night
mode quickly. Acting on this plan, the LLM selects the search tab
(the upper sequence of Ul screens in Figure 5). However, it soon
discovers that the app doesn’t support a quick setting for night
mode through the search tab. Without a replanning strategy, the
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repeats the workflow till the test objective reached.

LLM blindly and randomly explores the search page, stuck on the
search page for many steps leading to low effectiveness.

In the subsequent trial, without advanced prompting strategy [52],
the LLM is instructed not to click on search button again. Unfor-
tunately, due to the instruction violation against these negation
instructions, the LLM ignores the “search button doesn’t work” in-
struction, goes into the search page and gets stuck on the search
page again, leading to the low effectiveness.

In the first failure case, GUARDIAN can identify the planning
when the search tab the LLM chosen does not match the UI state
after clicking the search tab, and then restore the AUT to the home
page. In the second failure case, GUARDIAN refines the action space
by removing the search tab from the action space, ensuring the
LLM not to enter the search page again.

3 GUARDIAN Approach
3.1 System Architecture of GUARDIAN

Figure 2 presents the system architecture of GUARDIAN. GUARDIAN
takes a test objective, an AUT, and an LLM as inputs. To improve the
effectiveness of automated feature-based UI testing, GUARDIAN con-
sists of three modules: Domain Knowledge Loader, Memory Module,
and Execution Engine.

3.1.1 Domain Knowledge Loader. As shown in our preliminary
study (detailed in Section 2.2), encoding domain knowledge in
prompts may not work as intended. Consequently, instead of tun-
ing prompts for domain knowledge incorporation, GUARDIAN uses
the domain knowledge loader to incorporate the domain knowledge.
Specifically, the domain knowledge loader transforms the domain
knowledge into algorithms of the action space optimizer, the val-
idator, and the error handler. These algorithms refine the action
space of the LLM (detailed in Section 3.2.2) or change the state of
planning (detailed in Section 3.2.4) to enforce the LLM’s exploration
to conform to the domain knowledge, improving the effectiveness
of LLM-based UI exploration. Table 2 presents the concrete domain
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Algorithm 1 Main Algorithm of GUARDIAN
Require: an LLM LLM, app under test AUT

1: O « Null > action space
28«0 > blocked action set
3 H ] > exploration history of UI states

4: while not achieve test objective do
5 O «— AUT.dump_hierarchy()

6: S « AUT .get_state()

7: H .append(O)

8: 0 ] > step (1)
9: forae O do

10: if (a,S) ¢ B then

1 O’.append(a) > step (2)

12: prompt — PromptConstruct(O’, H)

13: response < LLM.call(prompt)

14: action « Mapping(response, 0)

15: AUT .execute(action)

16: O «— AUT.dump_hieararchy

17: ReflectPrompt «— (prompt, action, O)

18: LMCheck « LLM.call(ReflectPrompt)
reflection, return True if considered invalidated

19: if O € H then

> step @

> step @
> step @

> LLM-based

20: HeuristicCheck < True v action leads to a loop or
unresponsive Ul state.

21: else

22: HeuristicCheck < False

23: if HeuristicCheck V LMCheck then

24: B.add((action, S)) > step @

25: AUT .restore > step (6)

26: else

27: B.add(action) > block repeating actions

knowledge borrowed from existing work [10, 52, 67, 70] and used for
the current implementation of GuARDIAN. First, Time Machine [10]
and Vet [67] reported that an effective strategy of automated UI test-
ing should avoid exploration loops and tarpits, where automated
Ul testing tools repetitively explore a small fraction (of the app
functionality) that is already visited before. Based on these insights,
we refine the action space by removing Ul actions (from the action
space) that lead to exploration tarpits (detailed in Section 3.2.2) and
replan when a loop or an exploration tarpit is encountered (detailed
in Section 3.2.4). Second, in the design of LLM agents, Droidbot-
GPT [70] proposed to avoid selecting an already selected UI action,
and Reflexion [52] proposed to use the self-reflection mechanism
of LLMs to re-generate planning. Based on these insights, we refine
the action space to avoid selecting repeated UI actions (detailed in
Section 3.2.2) and replan when the LLM determines that the current
plan is invalidated by subsequent exploration feedback (detailed in
Section 3.2.4).

3.1.2  Memory Module. The memory module stores the history
context, blocked actions determined by the domain knowledge, and
the LLM perceptible context which is the working memory of the
LLM. The history context stores all the UI contexts encountered
during the exploration on the AUT. Each UI context contains an
Activity name, a UI hierarchy, the planned UI action by the LLM on
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Table 2: Domain Knowledge Borrowed from Existing Work.

Knowledge Source Domain Knowledge

Automated Ul Testing
Time Machine [10] Avoiding Exploration Loops
Vet [67] Avoiding Exploration Tarpits
LLM Agents

Reflexion [52]
Droidbot-GPT [70]

Alternative Planning after Failure
Avoiding Action Repetition
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Figure 7: Running Example of GuarbpIAN.

the UI hierarchy, and the corresponding Ul transition after execut-
ing the LLM’s planned UI action on the AUT. The blocked action
space, i.e., B, stores the actions that are blocked according to the
domain knowledge (detailed in Sections 3.2.2 and 3.2.4). Each item
in B is a tuple (UI action x, Ul state s). Each Ul action is uniquely
identified using its textual attributes obtained from the XML file of
the UI hierarchy, and each UI state is identified using the UI layout
ignoring the text field (used by previous work [55, 67]). On UI state
s, Guardian blocks UI action x if (x,s) € B.

3.1.3  Execution Engine. The execution engine proxies the interac-
tion between the LLM and the AUT. On the LLM side, the execution
engine provides the LLM with prompts describing instructions and
the refined action space, receives the LLM’s output, and parses the
LLM’s output into an executable UI action. On the AUT side, the
execution driver executes Ul actions on the AUT, dumps the Ul
hierarchy file representing the screen of the AUT, and parses the
Ul hierarchy file to obtain the current action space on the AUT.

3.2 Workflow of GUARDIAN

3.2.1  Workflow Overview. Figure 6 presents GUARDIAN’s one-round
workflow of assisting the LLM in generating one UI action and Al-
gorithm 1 illustrates the details of each step in the workflow. The
workflow is repeated until the test objective is reached.
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Refining action space. In each round during the automated feature-
based UI testing, GUARDIAN first enumerates a list of available UI

actions present in the current AUT interface to formulate the ac-
tion space O (step (1)). GuARDIAN then refines the action space by

removing the blocked actions on the current UI state according

to B, yielding a refined action space o’ (step (2), elaborated in

Section 3.2.2).

Prompting the LLM with refined action space. With the re-
fined action space O’, GUARDIAN generates prompts and sends

the prompt to the LLM to obtain the LLM’s response (step (3)).
GUARDIAN parses the LLM’s response into an executable UI action,
and executes the U action on the AUT (step (4)).

Replanning via state restoration. After executing the UI action,
GUARDIAN obtains the Ul state on the AUT to validate whether the

Ul action yields expected outcomes (step (5)). If the UI action is vali-
dated, GUARDIAN enters the next iteration. Otherwise, the Ul action

is invalidated and GUARDIAN deliberately replans by restoring the

AUT state and adding the Ul action along with the corresponding UI

state to the blocked action set B (step (6)), detailed in Section 3.2.4).
GUARDIAN iterates the workflow shown in Figure 6 until the test

objective is reached.

3.22  Refining the Action Space. In each iteration within automated
feature-based UI testing, a Ul action is chosen from a set denoted
as Ul action space. This space includes all possible Ul actions for the
current iteration. As shown in our preliminary study (Section 2.1),
LLMs are experts at selecting a UI action from the UI action space.
Consequently, GUARDIAN converts Ul testing specific instructions
to the tasks that the LLM is an expert at, i.e., selecting a UI action
from an action space. In particular, GUARDIAN maintains a blocked
UI action set B, and refines the action space O according to 8
(Lines 9-11 in Algorithm 1). GUARDIAN uses the domain knowledge
presented in Table 2 to maintain 8. First, inspired by Droidbot-
GPT [70], we block a UI action if it has already been chosen in the
same Ul state in previous iterations (Line 27 in Algorithm 1). Second,
inspired by Time Machine [10] and Vet [67], we block a Ul action
if it leads to an exploration loop or an unresponsive Ul state (i.e., a
tarpit) (Lines 19-22 in Algorithm 1, detailed in Section 3.2.4). Third,
inspired by Reflexion [52], any UI action invalidated by the LLM’s
reflection is also blocked (Lines 16-18 in Algorithm 1, detailed in
Section 3.2.4). The lower part of Figure 7 shows a running example
of blocking the search tab with GUARDIAN, effectively addressing
the limitations of existing approaches depicted in Figure 5.

3.2.3  Prompt and Parser Design. After obtaining the safe Ul action
space O', GUARDIAN proceeds to articulate the refined UI action
space, the test objective, the current plan, and the task instructions
within a prompt, as illustrated in Figure 8.

GUARDIAN also allocates a unique identifier to each UI action
within O’ by sorting the Ul action list and enumerating each action
based on its index in the list, subsequently assigning the identifier
“index-i” to the i-th Ul action. These unique identifiers are crucial
for extracting the selected UI action from the LLM’s response with
regular expressions. The description of each UI action includes its
event type , resource-id, textual representation, and accessibility
information (as retrieved by UIAutomator [16]), provided these
attributes are available.
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You are a UI testing expert helping me <test
objective> on <app name>.

You have selected <validated UI action history>.

Currently we have <Action space size> UI actions:

index-0: a Button (ally information: scroll to see
more options) to swipe

index-1: a View (resource_id widget_form_edittext,
text password) to text

Your task is to select one UI action that helps
achieve the <test objective>. First, think
about which UI action satisfies our need, and
then select only one UI action by its
identifier.

Figure 8: Prompt Design of UI Representation.

GUARDIAN supports four primary types of Ul actions:

e Click: click on the center point of a given UI element.

o Long Click: press on the center point of the UI element for
one second.

e Swipe: query the LLM for the direction and distance of the
swipe, and then perform the swipe operation.

o Text: generate an additional query to the LLM for generating
an appropriate string input, which is then entered into the
given Ul element.

3.2.4  Replanning via State Restoration. After executing the planned
Ul action on the AUT, GUARDIAN validates whether the previous
Ul action yields expected outcomes. If the Ul action does not yield
expected outcomes, GUARDIAN invalidates the UI action for the
given test objective and replans a Ul action. Inspired by the domain
knowledge from Reflexion [52] and automated UI testing tools [10,
67] (listed in Table 2), GUARDIAN employs a combination of LLM
feedback and heuristic rules to validate whether the outcome of a
UI action is expected based on its prior planning.

LLM-based reflection (Lines 16-18 in Algorithm 1). Inspired
by Reflexion [52], after executing a UI action, GUARDIAN consults
the LLM to determine whether the result matches the expected
outcome, based on the initial plan (including both the prompt and
the LLM’s response) and the post-execution Ul screen. A response
of “No” from the LLM indicates that the action is invalidated.

Heuristic rule check (Lines 19-22 in Algorithm 1). Inspired by
Time Machine [10] and Vet [67], GUARDIAN evaluates the action’s
results against known exploration pitfalls including unresponsive-
ness [67], repetitive exploration [67], and exploration loops [10].
An action is invalidated if it either fails to alter the UI screen or
leads to a previously visited screen within the same trial.

If a UI action is identified as invalidated by either LLM-based
reflection or the heuristic rule check (Line 23 in Algorithm 1),
GUARDIAN adds it to the block action set (Line 24 in Algorithm 1).
When a Ul action is invalidated, GUARDIAN automatically restores
the UI state to the state before the invalidated Ul action is executed
(Line 25 in Algorithm 1). Actions leading to unresponsiveness re-
quire no further steps. For actions resulting in a return to a previ-
ously visited Ul screen, GUARDIAN replays preceding actions up
to the point just before the invalidated action. If invalidated by
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LLM feedback, particularly for “click” actions, GUARDIAN triggers a
“back” action on the AUT to revert to the previous state. The upper
part of Figure 7 shows a running example of invalidating the search
tab and restores the AUT to the home page, effectively addressing
the limitations of existing approaches depicted in Figure 5. Once the
Ul state is restored, GUARDIAN initiates the next iteration, where
the LLM is presented with a refined Ul action space (detailed in
Section 3.2.2), excluding the previously invalidated UI action.

4 Evaluation

To assess the effectiveness of GUARDIAN and its individual algo-
rithms, we conduct comprehensive evaluations to answer the fol-
lowing research questions:

e ROQ3: How effective is GUARDIAN compared to state-of-the-
art approaches?

o RQ4: How effective is action space refinement in improving
the effectiveness of automated feature-based UI testing?

e RQS5: How effective is replanning via restoration in improv-
ing the effectiveness of automated feature-based UI testing?

e RQ6: How effective is GUARDIAN on “unseen data”?

4.1 Evaluation Setup

Test platform. All experiments are conducted on the official An-
droid x64 emulators running Android 6.0 on a server with four
AMD EPYC 7H12 64-Core Processors. Each emulator is allocated
with 4 dedicated CPU cores, 2 GB RAM, and 2 GB internal storage.
We manually write auto-login scripts for apps requiring a login to
access the features used in the evaluation. Each of these scripts is
executed only once before the corresponding app starts to be tested
in each test run.

Benchmark. We reuse an existing benchmark MoTTF [5] and col-
lect additional tasks on popular industrial apps [66] to construct
the FEsTIVAL (FEature-baSed UI tesTIng eVALuation) benchmark
for the study. The MoTTF dataset [5] consists of 344 vision-language
navigation tasks on 125 mobile apps. The vision-language naviga-
tion tasks are similar to feature-based UI testing. We install the
provided APKs on emulators and execute the ground-truth tasks
on the AUT. If the APK can be installed and the execution trace
is the same as the provided UI hierarchy traces, we add it to Fs-
TIVAL. We obtain 28 tasks runnable on our test platform. Since
the task complexity collected from the MoTIF dataset is relatively
low (consisting of 2-4 Ul actions per task), we collect 30 additional
tasks (consisting of 4-13 UI actions per task) on popular industrial
apps [48, 65-67]. Finally, we obtain 58 tasks from 23 popular mobile
apps for evaluation.

Prompting-based LLM approaches. We use the following three
state-of-the-art LLM approaches that are designed for or can be
adapted for automated feature-based UI testing.

e ReAct [75] directs LLMs to produce both verbal reasoning
traces and actions related to a given task in an interleaved
manner, enabling the model to engage in dynamic reasoning.

e Reflexion [52] utilizes verbal reinforcement learning to
enable agents to learn from prior failures, mirroring the iter-
ative learning process observed in humans tackling complex
tasks.
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e Droidbot-GPT [70] is an LLM-based Ul navigation approach.
Taking a test objective and the current UI screen of the AUT
as inputs, Droidbot-GPT iteratively selects the most proper
Ul action to achieve the test objective, with explicit domain
knowledge outlined in the prompt.

Note that all of the state-of-the-art approaches use prompt engi-
neering [33] to instruct the LLM to follow their designed strategies.
For ReAct and Reflexion, we implement them for the automated
feature-based UI testing task based on their code written for Web-
Shop [73], a web simulation environment resembling mobile apps.
We use the same prompt design for describing the UI content (de-
tailed in Section 3) as GUARDIAN. A major difference in our im-
plementation of ReAct and Reflexion is that we manually block
the “back” action on the front page. Otherwise the two approaches
will deterministically fail to finish any task by repeatedly clicking
the “back” button on the front page. For Droidbot-GPT, we use its
publicly available implementation [69].

We also compare the effectiveness of non-LLM-based approaches

used by the MoTIF dataset, including Seq2Seq [53], MOCA [54],
and Seq2Act [27]. We simply use the released parameters of these
models along with MoTIF.
Evaluation Metrics. We evaluate the effectiveness by comparing
the ground-truth UT action sequence with the Ul action sequence
generated by an approach. We use success rate (SR) and average
completion proportion (ACP), which are commonly used for evaluat-
ing the effectiveness of automated feature-based UI testing [5, 70].
We use subsequence [71] when computing the average completion
proportion and success rate for all approaches in the same way. Sup-
pose that the ground-truth Ul action sequence is GT = [ay, ..., an],
and the generated Ul action sequence is Gen = [ay,...,am]. We
check whether GT is a subsequence [71] of Gen. If GT is a sub-
sequence of Gen, then the task is treated as a success. Note that
the design choice of using subsequence does not require the UI
action to be adjacent in Gen but requires only the orders to be
the same, ignoring the impact of loops and irrelevant UI actions.
The SR = W measures the percentage of success-
ful tasks. Let us denote GT; = [ay, .., a;] to be the prefix of GT
with the first i UI actions. The average completion proportion
ACP = max %Vi € [1,..,n] A GT; is a subsequence of Gen.

4.2 RQ3. Effectiveness of GUARDIAN

In this section, we evaluate the overall effectiveness of GUARDIAN
for automated feature-based Ul testing and analyze the root causes
leading to failures in using LLMs for automated feature-based UI
testing.

4.2.1 Main Results. Table 3 presents the overall effectiveness of
GUARDIAN and prompting-based state-of-the-art approaches. It
demonstrates that LLM-based approaches significantly outperform
their non-LLM-based counterparts in automated feature-based UI
testing. It is important to highlight that the non-LLM-based meth-
ods, which are trained on the MoTTF dataset, only manage to attain
success rates in the single digits. This result underlines the inher-
ent complexity and challenges posed by automated feature-based
UI testing, suggesting that traditional approaches may struggle to
effectively navigate this domain.
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Table 3: Overall Effectiveness of GUARDIAN.

Approaches SR (%) ACP (%)
Non-LLM

Seq2Seq [53] 8.8 19.8

MOCA [54] 6.9 21.2

Seq2Act [27] 1.9 5.4
Prompting-based

ReAct [75] 13.8 25.5

Reflexion [52] 19.0 26.5

Droidbot-GPT [70] 6.9 27.6

Runtime-system-guarded

GUARDIAN (Ours)  48.3 (+154%) 64.0 (+132%)

Table 4: Cause Analysis of GUARDIAN’s Failures.

Cause # of Failed Cases
Vision Modality Input 17 (56.7%)
Screen-level Understanding 8 (26.7%)
Element-level Understanding 5(16.7%)

Notably, Reflexion stands out with the highest success rate among
all the previous approaches, achieving 19.0%, while Droidbot-GPT
leads in terms of average completion proportion, reaching 27.6%.
Reflexion achieves the highest success rate, particularly noteworthy
as it significantly surpasses ReAct, despite both employing almost
identical prompting strategies. The key differentiator is Reflexion’s
additional reflection mechanism that is expected to adjust the plan-
ning based on previous failed trials. This phenomenon demonstrates
the necessity of adapting planning strategies based on gradually
enriched information obtained during the exploration of the AUT.

Given its deliberate and reliable replanning achieved by the
runtime system instead of expecting the prompts to work for the
LLM, GUARDIAN achieves 48.3% success rate, outperforming the
best state-of-the-art approach Reflexion [52] with 154% relative im-
provement, As for the average completion proportion, GUARDIAN
achieves 64.0%, outperforming the best state-of-the-art approach
Droidbot-GPT [70] with 132% relative improvement. Given the safe
Ul action space construction algorithm, GUARDIAN reliably avoids
selecting repeated Ul actions, and substantially reduces the 44%
repeated Ul actions by Droidbot-GPT (as shown in the preliminary
study). The substantial improvement demonstrates the effectiveness
of GUARDIAN, the runtime-system approach to reliably improving
LLM-based automated feature-based UI testing instead of exten-
sively optimizing the prompt design.

4.2.2  Investigation of Failure Cases of GUARDIAN. To investigate
the root causes of failures of GUARDIAN, we manually inspect the
30 failed tasks. Table 4 presents the analysis of root causes of failed
tasks, categorized into three types. First, among the investigated
cases, the most common reason that GUARDIAN cannot generate
the desired test is that the UI hierarchy information is not enough
to perform the task. When generating specific test steps such as
clicking on an icon or image button without accessibility informa-
tion, GUARDIAN cannot understand the intent of these UI elements
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Table 5: Efficacy of Action Space Refinement.

Approaches SR (%) ACP (%)

Droidbot-GPT 6.9 27.6
REFINE-DROIDBOT 13.8 (+100.0%)  32.1 (+16.3%)

UNREFINE-GUARDIAN 34.5 (-28.5%) 51.9 (-18.9%)
GUARDIAN 48.3 64.0

and consequently fails to select them to achieve the task. If vision
modality information can be integrated, GUARDIAN can be improved.
Second, GUARDIAN sometimes ignores the scrollable elements on
the current UI screen and decides to go back to the previous screen
when all the elements on the current Ul are unrelated to the feature.
GUARDIAN can benefit from a better description of the semantics of
scrollable UI elements. Third, GUARDIAN cannot decide which of
the Ul elements is the most related to the goal when several similar
UI element descriptions appear. For example, in T, when trying to
switch the translation language, two elements on the screen are
related to the feature textually. However, one element is for switch-
ing the two languages for translation, which is only weakly related
to the targeted feature. Although the element has a “swap” in its
name, GUARDIAN still tends to mistake it for the correct element.
These cases can be inherently difficult to solve since handling them
requires more advanced LLMs for test step grounding. However,
these potential improvement directions involve using advanced
multi-modal models (for taking visual inputs and better UI content
comprehension) and designing better prompting strategies, which
are orthogonal to the design and purpose of GUARDIAN.

Answer to RQ3: GUARDIAN substantially outperforms
prompting-based SOTA approaches with 154% success rate and
132% average completion proportion relative improvement.

4.3 ROQA4. Effectiveness of Action Space
Refinement

In this section, we evaluate the effectiveness as well as the general-
izability of refining action space to ensure the instruction following.

We compare GUARDIAN and Droidbot-GPT, examining their per-
formance both with and without action space refinement. The
comparison involves the following baselines:

¢ REFINE-DROIDBOT augments Droidbot-GPT [70] by incor-
porating the safe UI action space to prevent the selection of
Ul actions already chosen in previous trials.

e UNREFINE-GUARDIAN operates without the safe Ul ac-
tion space, maintaining all other configurations identical to
GUARDIAN.

Table 5 presents the experimental results on the ablation study
on the effectiveness of action space refinement to ensure instruction
following. both Droidbot-GPT and GUARDIAN substantially bene-
fits from action space refinement. Specifically, REFINE-DROIDBOT
demonstrates a remarkable improvement, outperforming Droidbot-
GPT with a 100.0% increase in success rate and a 16.3% increase in
average completion proportion. Notably, REFINE-DRoIDBOT dou-
bles the success rate of Droidbot-GPT, underscoring the promising
generalizability of this approach. Conversely, the removal of ac-
tion space refinement in UNREFINE-GUARDIAN leads to a marked
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Table 6: Efficacy of Adjusting Planning.

Approaches SR (%) ACP (%)
Static Re-Plan
CoT [68] 1.7 11.1

ToT [74] 17.2 (+911.8%)  35.0 (+216.2%)

Dynamic Re-Plan

Droidbot-GPT 6.9 27.6
REPLAN-DROIDBOT 19.0 (+175.4%)  34.5 (+25.0%)
GUARDIAN-NOREPLAN 32.8 (-32.1%) 48.5 (-24.2%)

GUARDIAN 48.3 64.0

decrease in performance for GUARDIAN, with 28.5% reduction in
success rate and 18.9% reduction in average completion proportion.

Answer to RQ4: Refining action space significantly enhances
instruction following, markedly boosting the effectiveness of
GuaRrDIAN. This strategy also proves beneficial in augmenting
the existing LLM-based approaches.

4.4 ROQ5: Effectiveness of Replanning

In this section, we study the effectiveness of replanning via restora-
tion, especially with enriched information obtained from exploring
the AUT. To comprehensively investigate this research question,
we compare GUARDIAN with the following baselines:

e GUARDIAN-NOREPLAN omits the planning adjustment al-
gorithm, maintaining all other configurations identical to
GUARDIAN.

¢ REPLAN-DROIDBOT enhances Droidbot-GPT by incorpo-
rating the replanning via restoration.

e Chain of Thought (CoT) [68] statically builds one Ul action
sequence to achieve the test objective before exploring the
AUT. CoT explores the AUT to find UI actions that is most
similar with UI actions in the dreamed sequence.

e Tree of Thought (ToT) [74] improves over CoT by statically
conceiving five Ul action sequences, increasing the diversity
of paths to the test objective.

Note that both CoT and ToT do not create new planning with the
gradually enriched information on the AUT. Instead, both of them
imagine possible UI action sequences of the given test objective.

Table 6 presents the experimental results from which we have
three findings. First, Replanning-equipped approaches generally
outperform no-replanning approaches. ToT significantly surpasses
CoT, validating the hypothesis that even diversifying the initial
planning can increase effectiveness. Similarly, without the plan-
ning adjustment algorithm, GUARDIAN’s effectiveness substantially
drops. Second, dynamic replanning works better than static replan-
ning. While ToT substantially outperforms CoT, it is far from attain-
ing similar effectiveness as approaches with dynamic adjustment.
Third, Replanning generally improves effectiveness across differ-
ent approaches. The improved performance of REPLAN-DROIDBOT
over Droidbot-GPT, and its superiority to Reflexion [52], implying
that even existing LLM-based approaches benefit from dynamic
replanning.

Answer to RQ5: Replanning with restoration substantially im-
proves the effectiveness of automated feature-based UI testing.
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Table 7: Effectiveness on Unseen Data.

Approaches SR (%) ACP (%)
ReAct 0 9.6
Reflexion 16.7 283
Droidbot-GPT 8.3 21.8
GUARDIAN 58.3 (+249.1%)  66.9 (+136.4%)

4.5 RQ6: Effectiveness on Unseen Data

GUARDIAN's utility is demonstrated through its ability to consis-
tently boost the LLM’s performance beyond its initial configuration
regardless of data contamination, which is evident in our results
where GUARDIAN + LLM consistently outperforms the original LLM.
Unseen-data collection. For further validation, we conduct addi-
tional experiments to investigate the effectiveness of GUARDIAN on
unseen data. We recruit two participants, undergraduate students
majoring in computer science from a university class in software
engineering. We first train the two participants for two hours about
automated feature-based UI testing and the task format of FEs-
TIVAL. We have two constraints on these tasks. First, performing
the tasks requires login with non-trivial authentication such as
filling emailed verification code. Second, the tasks should come
from popular industrial apps, improving the representativeness of
the evaluation. We give the participants the freedom to pick any
popular industrial apps available on Google Play, and write any
tasks for these apps. In the end, we obtain 12 tasks written by these
two participants. The 12 tasks come from 5 highly popular apps,
and the average length of these 12 tasks is 4.2.

Result analysis. Table 7 presents the effectiveness of GUARDIAN
and baseline approaches on unseen data. On the 12 tasks, GUARDIAN
achieves 58.3% success rate, outperforming the best state-of-the-
art approach Reflexion with 249.1% relative improvement. As for
average completion proportion, GUARDIAN achieves 66.9% aver-
age completion proportion, outperforming the best state-of-the-art
approach Reflexion with 136.4% relative improvement. GUARDIAN
achieves a better improvement of the LLM’s effectiveness in the
additional experiments than the evaluation results on FESTIVAL.
These results further validate the effectiveness of GUARDIAN in
improving the LLM’s performance. We manually inspect to figure
out likely root causes of the failed cases and the suspected root
causes are listed with Table 4. Specifically, failing to incorporate
vision information remains the primary likely cause for the failed
cases of GUARDIAN, and these failed cases can be addressed with
multi-modal models [41] and are left as future work.

5 Discussions

In this section, we discuss the limitations of the current GUARDIAN’s
implementation and the future work to improve GUARDIAN.
Limited evaluation of LLMs. Currently, we implement and eval-
uate GUARDIAN with only one LLM namely GPT-3.5. While in-
struction violations of LLMs are found to be a prevalent issue [56],
especially in long-context scenarios [32, 59], whether instruction
violations are prevalent in automated feature-based UI testing re-
mains as open problem. Nevertheless, since GUARDIAN does not
rely on LLM-specific designs for the domain knowledge, we expect
that GUARDIAN can be used for improving a broader scope of LLMs,
left as our future work.
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Costs of incorporating domain knowledge. Currently, we man-
ually implement the domain knowledge within the GuarDIAN
framework. To incorporate more domain knowledge and improve
the usability of GUARDIAN, automating the process of turning
domain-knowledge description into executable programs within
the GuARDIAN framework is needed and is a promising direction
left for future work.

Assumptions on input modality. Currently, GUARDIAN is instan-
tiated with ChatGPT, which only accepts textual inputs. Mobile
apps contain rich visual information useful for automated feature-
based UI testing. How to incorporate the visual information of
mobile apps can be an interesting yet challenging direction, specifi-
cally how to define visual-specific instructions, which we plan to
explore in our future work.

Assumptions on Test Objectives. In the evaluation, we assume
each task has a unique ground truth UI action sequence. However,
in practice, the same test objective on the same app can have more
than one paths to access (denoted as alternative paths [31]). We
make our best effort by adding constraints in test objectives to
make the paths to be unique. However, it can be interesting and
challenging to generate all possible paths to achieve the same test
objective, left as our future work.

6 Threats to Validity

The main external threat to the validity concerns the representative-
ness of the subject apps and approaches selected for our evaluation.
To mitigate the impact of the bias introduced by app selection, we
use highly popular industrial apps widely used by related work
to make the constructed benchmark more practical compared to
only using the tasks from MoTIF. To mitigate the impact of the
bias introduced by baseline selection, we choose state-of-the-art
approaches.

The threats to internal validity are instrumentation effects that
can bias our results, including faults in our implementation of
GUARDIAN and parameter selection of GUARDIAN. Faults in our im-

plementation of GUARDIAN may affect the effectiveness of GUARDIAN.

To reduce these threats, all authors carefully test and validate
GUARDIAN on the Quizlet app to assure the behavior of GuarRDIAN
is as expected, and we set the temperature of LLM backbone to a
low level to reduce the randomness of LLMs.

7 Related Work

Automated Ul testing. Automated Ul testing has been a hot re-
search topic [1, 3, 6, 10, 15, 17, 19, 28, 36-38, 43, 49, 55, 72, 76] as well
as an industry practice [38, 47, 77], falling into four main categories:
(1) Some tools generate test inputs randomly and/or apply evolution-
ary algorithms upon these test inputs [10, 15, 36, 38, 76]. (2) Some
other tools conduct systematic exploration [1, 3, 37]. (3) Model-
based tools and their variants use a UI transition model to determine
the current test progress and target not-yet-explored functionali-
ties [6, 17, 19, 28, 55]. (4) Machine-learning-based tools [25, 29, 43,
48, 49] adopt deep learning or reinforcement learning techniques
to guide the exploration of the AUT. We gain domain knowledge
from existing automated UI testing tools [10, 67] for implementing
GUARDIAN.
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Sequential planning with LLMs. LLM-based sequential plan-
ning [7, 18, 42, 57, 63, 75] is an emerging field, having wide ap-
plications such as robotics [2, 39], video games [35], and virtual
reality [58]. It has been demonstrated that LLMs are powerful for
planning problems [18, 57, 63, 75]. ReAct [75] interleaves reasoning
and acting to enhance the LLM planning. Reflexion [52] deliber-
ately reflects on its previous failed trials. MemGPT [42] uses virtual
memory to address the long context issue.

Large language models for software testing. Large language
models [4] have gained significant attention and popularity in var-
ious areas [24, 60] including software engineering [12, 21] and
testing [64]. Most existing work in software testing using LLMs
focuses on embedding domain knowledge in prompts to adapt
LLMs for specific tasks. Liu et al.[34] employ LLMs for textual
input generation by transforming the task into a blank-filling prob-
lem. TitanFuzz [8] prompts LLMs to generate valid API sequences
and parameters to fuzz deep-learning libraries. ADBGPT [13] uses
prompt engineering to adapt LLMs for reproducing Android bug
reports, different from the exploratory nature of automated feature-
based UI testing. Our work in this paper focuses on improving
the effectiveness of LLMs with a runtime-system approach. Com-
plementing the existing work, GUARDIAN is a runtime framework
external to an LLM and flexibly incorporates domain knowledge,
providing a starting point to use external systems to assist an LLM
with software engineering tasks.

8 Conclusion

Feature-based UI testing has been extensively adopted in indus-
trial practices, but automated feature-based UI testing remains
an open challenge. Despite the success and trend of using large
language models (LLMs) for resembling planning problems, we
have found two major challenges of existing prompting-based ap-
proaches: LLMs’ low ability to follow task-specific instructions, and
to replan based on enriched information.

To address the preceding challenges, in this paper, we have pro-
posed GUARDIAN, a runtime framework with two key designs. First,
GUARDIAN refines the action space with domain-specific knowl-
edge to ensure instruction following. Second, GUARDIAN replans via
restoration to promptly adjust the exploration on the AUT. We have
constructed a benchmark named FESTIVAL containing 58 unique
tasks. Evaluation results on FEsTIVAL have shown that GUARDIAN
can achieve 48.3% success rate and 64.0% completion rate, outper-
forming state-of-the-art approaches with 154% and 132% relative
improvement with respect to the two metrics, respectively. Fur-
ther experiments have confirmed the effectiveness of individual
algorithm designs within GUARDIAN.

Acknowledgments

Tao Xie is the corresponding author. This work was partially sup-
ported by NSFC under Grant No. 62161146003, Grant No. 62382006,
Grant No.2021YFF1201103, NSF grant CCF-2146443, and the Ten-
cent Foundation/XPLORER PRIZE.

References

[1] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-
tomated concolic testing of smartphone Apps. In FSE.



ISSTA °24, September 16-20, 2024, Vienna, Austria Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei Yang, and Tao Xie

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siin- [29] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
derhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. 2018. Vision-and- deep learning-based approach to automated black-box Android app testing. In
language navigation: Interpreting visually-grounded navigation instructions in ASE.
real environments. In CVPR. [30] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2020. Test automation in
Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration open-source android apps: A large-scale empirical study. In ASE. 1078-1089.
for systematic testing of Android Apps. In OOPSLA. [31] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2022. Route: Roads not taken
[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, in ui testing. TOSEM (2022).

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda [32] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

=

=

Askell, et al. 2020. Language models are few-shot learners. NIPS 33 (2020),
1877-1901.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A Plummer. 2022. A dataset for interactive vision-language navigation
with unknown command feasibility. In ECCV. Springer, 312-328.

Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of
Android apps with minimal restart and approximate learning. In OOPSLA.
Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and
Dhruv Batra. 2018. Embodied question answering. In CVPR. 1-10.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. arXiv:2212.14834 [cs.SE]

Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. 2013. A survey of
mobile cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing 13, 18 (2013), 1587-1611.

Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android Apps. In ICSE.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen
Lin, Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. 2024.
Faith and fate: Limits of transformers on compositionality. NIPS (2024).

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large language models for software engineering:
Survey and open problems. arXiv preprint arXiv:2310.03533 (2023).

Sidong Feng and Chunyang Chen. 2024. Prompting is all you need: Automated
Android bug replay with large language models. In ICSE. 1-13.

DiFei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and
Mike Zheng Shou. 2023. AssistGPT: A general multi-modal assistant that can
plan, execute, inspect, and learn. (2023).

Google. 2021. Android Monkey.  https://developer.android.com/studio/test/
monkey

Google. 2023. UI Automator. https://developer.android.com/training/testing/
uiautomator

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In ICSE.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual programming: Composi-
tional visual reasoning without training. In CVPR.

Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: Programmable Ul-automation for large-scale dynamic analysis of
mobile Apps. In MobiSys.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe
Zhou, Jiaqing Liang, and Yanghua Xiao. 2024. Can Large Language Models
Understand Real-World Complex Instructions?. In AAAL

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for
software engineering: A systematic literature review. arXiv:2308.10620 [cs.SE]
Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi,
Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. 2023. Followbench: A multi-
level fine-grained constraints following benchmark for large language models.
arXiv preprint arXiv:2310.20410 (2023).

Adam Tauman Kalai and Santosh S Vempala. 2024. Calibrated language models
must hallucinate. In STOC.

Enkelejda Kasneci, Kathrin Sessler, Stefan Kiichemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke
Hiillermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel,
Jirgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel,
Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT
for good? On opportunities and challenges of large language models for education.
Learning and Individual Differences (2023).

Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tan-
riverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of Android
applications. In ICST.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2024.
Long-context llms struggle with long in-context learning. arXiv preprint
arXiv:2404.02060 (2024).

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile Ul action sequences. In ACL. Association
for Computational Linguistics, Online.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A
lightweight Ul-guided test input generator for Android. In ICSE-C.

Fabio Petroni, and Percy Liang. 2024. Lost in the middle: How language models
use long contexts. TACL 12 (2024), 157-173.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. arXiv preprint arXiv:2107.13586
(2021).

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2022. Fill in the Blank: Context-aware automated text input genera-
tion for mobile GUI testing. arXiv preprint arXiv:2212.04732 (2022).

Corey Lynch and Pierre Sermanet. 2021. Language conditioned imitation learning
over unstructured data. Robotics: Science and Systems (2021). https://arxiv.org/
abs/2005.07648

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for Android Apps. In ESEC/FSE.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
evolutionary testing of Android Apps. In FSE.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for Android applications. In ISSTA.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin,
and Yoav Artzi. 2018. Mapping instructions to actions in 3D environments with
visual goal prediction. In EMNLP. Association for Computational Linguistics,
Brussels, Belgium, 2667-2678. https://doi.org/10.18653/v1/D18-1287

OpenAl 2024. Introducing to ChatGPT. https://openai.com/blog/chatgpt
OpenAl 2024. Learn how to use GPT-4 to understand images. https://platform.
openai.com/docs/guides/vision

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and
Joseph E Gonzalez. 2023. MemGPT: Towards LLMs as operating systems. arXiv
preprint arXiv:2310.08560 (2023).

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In ISSTA.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. 2024. On limitations
of the transformer architecture. arXiv preprint arXiv:2402.08164 (2024).

Dezhi Ran. 2024. Publicly available implementation of Guardian. https://github.
com/PKU- ASE-RISE/Guardian

D. Ran, Y. Fu, Y. He, T. Chen, X. Tang, and T. Xie. 2024. Path Toward Elderly
Friendly Mobile Apps. Computer 57, 06 (jun 2024), 29-39. https://doi.org/10.
1109/MC.2023.3322855

Dezhi Ran, Zongyang Li, Chenxu Liu, Wenyu Wang, Weizhi Meng, Xionglin Wu,
Hui Jin, Jing Cui, Xing Tang, and Tao Xie. 2022. Automated visual testing for
mobile apps in an industrial setting. In ICSE-SEIP.

Dezhi Ran, Hao Wang, Wenyu Wang, and Tao Xie. 2023. Badge: Prioritizing UI
events with hierarchical multi-armed bandits for automated UI Testing. In ICSE.
Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022.
Deep reinforcement learning for black-box testing of Android apps. TOSEM
(2022).

Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong.
2002. Empirical studies of test-suite reduction. STVR (2002).

Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies.
2009. The case for VM-based cloudlets in mobile computing. IEEE pervasive
Computing (2009).

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language agents with verbal
reinforcement learning. arXiv:2303.11366 [cs.AlI]

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. Alfred: A benchmark
for interpreting grounded instructions for everyday tasks. In CVPR. 10740-10749.
Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim, Roozbeh Mottaghi,
and Jonghyun Choi. 2021. Factorizing perception and policy for interactive
instruction following. In ICCV. 1888-1897.

Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android Apps. In ESEC/FSE.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian Hu, Rahul Gupta,
John Frederick Wieting, Nanyun Peng, and Xuezhe Ma. 2023. Evaluating large
language models on controlled generation tasks. arXiv preprint arXiv:2310.14542
(2023).

Didac Suris, Sachit Menon, and Carl Vondrick. 2023. Vipergpt: Visual inference
via python execution for reasoning. arXiv preprint arXiv:2303.08128 (2023).


https://arxiv.org/abs/2212.14834
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/training/testing/uiautomator
https://developer.android.com/training/testing/uiautomator
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://doi.org/10.18653/v1/D18-1287
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/guides/vision
https://platform.openai.com/docs/guides/vision
https://github.com/PKU-ASE-RISE/Guardian
https://github.com/PKU-ASE-RISE/Guardian
https://doi.org/10.1109/MC.2023.3322855
https://doi.org/10.1109/MC.2023.3322855
https://arxiv.org/abs/2303.11366

GUARDIAN: A Runtime Framework for LLM-Based Ul Exploration

[58]

[59]

[60]

[61

[62]

[63

[64]

[65]

[66]

[67]

Fuwen Tan, Song Feng, and Vicente Ordonez. 2019. Text2Scene: Generating
compositional scenes from textual descriptions. In CVPR.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. 2020. Long range
arena: A benchmark for efficient transformers. arXiv preprint arXiv:2011.04006
(2020).

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura
Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. 2023. Large language models
in medicine. Nature Medicine (2023).

Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra.
2012. Automating test automation. In ICSE. 881-891.

Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2022. Using
natural language processing techniques to improve manual test case descriptions.
In ICSE-SEIP. 311-320.

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction
with mobile ui using large language models. In CHL

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software testing with large language model: Survey, landscape, and
vision. arXiv:2307.07221 [cs.SE]

Wenyu Wang, Wing Lam, and Tao Xie. 2021. An infrastructure approach to
improving effectiveness of Android Ul testing tools. In ISSTA.

Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of Android test generation tools in
industrial cases. In ASE.

Wenyu Wang, Wei Yang, Tianyin Xu, and Tao Xie. 2021. Vet: identifying and
avoiding UI exploration tarpits. In ESEC/FSE.

ISSTA °24, September 16-20, 2024, Vienna, Austria

[68] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[69] Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. 2023. Droidbot-GPT.
https://github.com/GAIR-team/DroidBot-GPT

[70] Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. 2023. DroidBot-GPT:
GPT-powered UI automation for Android. arXiv preprint arXiv:2304.07061 (2023).

[71] Wikipedia. 2024. Subsequence. https://en.wikipedia.org/wiki/Subsequence

[72] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A grey-box approach for automated
GUI-model generation of mobile applications. In FASE.

[73] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. 2022. Webshop:
Towards scalable real-world web interaction with grounded language agents.
NIPS 35 (2022), 20744-20757.

[74] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,

and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving

with large language models. arXiv preprint arXiv:2305.10601 (2023).

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.

arXiv preprint arXiv:2210.03629 (2022).

Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing

the Android Apps with intent-filter tag. In MoMM.

Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang

Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated test input generation

for Android: Towards getting there in an industrial case. In ICSE-SEIP.

[75

(76

[77

Received 2024-04-12; accepted 2024-07-03


https://arxiv.org/abs/2307.07221
https://github.com/GAIR-team/DroidBot-GPT
https://en.wikipedia.org/wiki/Subsequence

	Abstract
	1 Introduction
	2 Preliminary Study
	2.1 RQ1: UI Comprehension Capability of LLMs
	2.2 RQ2: Unintended Outcomes against Prompting Strategies
	2.3 Motivating Example

	3 Guardian Approach
	3.1 System Architecture of Guardian
	3.2 Workflow of Guardian

	4 Evaluation
	4.1 Evaluation Setup
	4.2 RQ3. Effectiveness of Guardian
	4.3 RQ4. Effectiveness of Action Space Refinement
	4.4 RQ5: Effectiveness of Replanning
	4.5 RQ6: Effectiveness on Unseen Data

	5 Discussions
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

