
SCIENCE CHINA
Information Sciences

April 2025, Vol. 68, Iss. 4, 146101:1–146101:3

https://doi.org/10.1007/s11432-025-4311-9

c© Science China Press 2025 info.scichina.com link.springer.com

. PERSPECTIVE .

An infrastructure software perspective toward
computation offloading between executable

specifications and foundation models

Dezhi RAN1, Mengzhou WU2, Yuan CAO2, Assaf MARRON3,

David HAREL3 & Tao XIE1*

1Key Laboratory of High Confidence Software Technologies (PKU), Ministry of Education, School of Computer Science,

Peking University, Beijing 100871, China
2School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

3Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel

Received 4 January 2025/Revised 13 February 2025/Accepted 17 February 2025/Published online 13 March 2025

Citation Ran D Z, Wu M Z, Cao Y, et al. An infrastructure software perspective toward computation offloading be-

tween executable specifications and foundation models. Sci China Inf Sci, 2025, 68(4): 146101, https://doi.org/10.1007/

s11432-025-4311-9

Foundation models (FMs) [1] have revolutionized software

development and become the core components of large soft-

ware systems. This paradigm shift, however, demands

fundamental re-imagining of software engineering theories

and methodologies [2]. Instead of replacing existing soft-

ware modules implemented by symbolic logic, incorporating

FMs’ capabilities to build software systems requires entirely

new modules that leverage the unique capabilities of FMs.

Specifically, while FMs excel at handling uncertainty, recog-

nizing patterns, and processing unstructured data, we need

new engineering theories that support the paradigm shift

from explicitly programming and maintaining user-defined

symbolic logic to creating rich, expressive requirements that

FMs can accurately perceive and implement.

In this article, we present a new perspective for building

reliable FM-based software systems via computation offload-

ing, which strategically distributes computational tasks be-

tween FMs and traditional executable specifications [3] (e.g.,

symbolic programs) based on their respective strengths [4,5].

Computation offloading has been widely adopted by cloud

computing [6], which primarily focuses on distributing com-

putational tasks based on hardware resources and perfor-

mance metrics across cloud and edge devices. We extend

this concept to a semantic level, where offloading decisions

are primarily driven by the inherent capabilities of FMs and

executable specifications rather than just computational ca-

pacity. While FMs excel at pattern recognition and han-

dling unstructured data, they may struggle with precise log-

ical reasoning and strict-constraint satisfaction. Conversely,

traditional software components are adept at exact compu-

tations and formal verification but lack the flexibility and

learning capabilities of FMs. By intelligently offloading com-

putations between these two complementary paradigms, we

can create a robust and efficient software system that lever-

ages the best of both worlds. This offloading mechanism

serves as a fundamental building block for FM-based soft-

ware, enabling developers to focus on high-level specifica-

tions while the system automatically determines the optimal

execution strategy across FMs and traditional components.

Complementarity between FMs and executable specifica-

tions. FMs and executable specifications such as symbolic

programs handle different types of computation tasks and

actually complement each other. For example, in image pro-

cessing, FMs can identify complex patterns while symbolic

programs can manipulate precise geometric transformations.

In natural language processing, FMs can generate creative

and coherent texts while symbolic programs can conduct

rigorous grammar checking. This symbiotic relationship en-

ables a new paradigm of software development where each

approach’s strengths compensate for the other’s weaknesses.

Pros and cons of FMs. From a usage convenience

perspective, FMs excel at handling unstructured data and

large-scale pattern recognition tasks, making them partic-

ularly effective at managing varied inputs and corner cases

that traditionally would require numerous individual han-

dling rules. Their learning curves are relatively gentle for

basic usage, as they can understand natural language in-

structions and generate responses without requiring exten-

sive programming knowledge. Development costs are ini-

tially high due to the need for substantial computational

resources and training data, but they become cost-effective

when handling a large number of similar tasks. Maintenance

costs can be significant, particularly for model updates and

retraining. The main maintenance challenge of FMs lies in

their expandability—while FMs can be fine-tuned for new

tasks, ensuring consistent performance across different do-

mains and maintaining model quality require careful man-

agement of training data and model architecture.

*Corresponding author (email: taoxie@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-025-4311-9&domain=pdf&date_stamp=2025-3-13
https://doi.org/10.1007/s11432-025-4311-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-025-4311-9
https://doi.org/10.1007/s11432-025-4311-9
https://doi.org/10.1007/s11432-025-4311-9


Ran D Z, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 146101:2

Figure 1 (Color online) Computation offloading between executable specifications (symbolic programs) and foundation models.

Pros and cons of executable specifications. Exe-

cutable specifications, manifested as symbolic programs, of-

fer precise control and verifiable behavior but come with

their own trade-offs. Their usage convenience is highest

when dealing with well-defined, structured problems and

formal specifications. The learning curve is steep, requir-

ing a deep understanding of programming languages, for-

mal methods, and domain-specific knowledge. Development

costs are moderate for simple specifications but can escalate

rapidly for complex systems requiring formal verification.

Maintenance costs of executable specifications are generally

lower than those of FMs, as changes can be implemented

through direct code modifications. The expandability of ex-

ecutable specifications is excellent for structured problems

within their domain, allowing for modular development and

clear separation of concerns. However, they struggle with

ambiguous or poorly defined requirements and lack the nat-

ural flexibility of FMs in handling variations in input data.

Orchestrating computation offloading via infrastructure

software. To enable computation offloading, we envision in-

frastructure software [7,8], a sophisticated middleware layer

that serves as the foundation for developing and maintain-

ing FM-native software. The infrastructure software orches-

trates computation offloading through a sophisticated inter-

play of multiple components, each designed to optimize the

allocation and execution of tasks across FMs and symbolic

programs. This orchestration process involves the following

eight key mechanisms.

Context analysis and task decomposition. The in-

frastructure software first analyzes the computational con-

text and requirements of incoming tasks. This analysis in-

volves identifying the nature of the computation, such as

whether it requires pattern recognition, logical reasoning,

or constraint solving. Complex tasks are decomposed into

subtasks that can be efficiently handled by either FMs or

symbolic programs. The analysis also considers data char-

acteristics and constraints that influence the offloading de-

cision, ensuring optimal task distribution.

Resource assessment and allocation. Based on the

context analysis, the infrastructure software performs dy-

namic resource assessment. This assessment includes evalu-

ating the availability and capabilities of different FMs, ana-

lyzing the computational resources required for symbolic-

program execution, and considering performance require-

ments, latency constraints, and resource costs. The sys-

tem then determines optimal strategies of resource alloca-

tion for different subtasks, ensuring efficient resource utiliza-

tion across the entire system.

Intelligent offloading decisions. The infrastructure

software makes informed decisions about where to execute

each computation. Tasks of pattern recognition and un-

structured data processing are directed to appropriate FMs,

while tasks of precise logical operations and formal verifica-

tion are assigned to symbolic programs. Hybrid tasks may

be split across both paradigms with careful coordination,

leveraging the strengths of each approach while minimizing

their limitations.

Data flow management. Efficient data handling is

crucial for successful computation offloading. The infras-

tructure software manages data transformation between

FM-compatible and symbolic program formats, implements

efficient data transfer protocols between components, and

maintains data consistency across different computational

paradigms. In addition, the data integrity and privacy dur-

ing the data transfer and transformation should be secured.

Execution coordination. The infrastructure software

coordinates the execution of offloaded computations through

sophisticated scheduling and synchronization mechanisms.

This coordination includes managing the parallel execution

of independent subtasks, handling inter-component commu-

nication and state management, and implementing robust

failure recovery and error-handling mechanisms. The coor-

dination ensures smooth operation across all system compo-

nents.

Quality assurance and verification. Throughout the

execution process, the infrastructure software ensures qual-

ity and correctness through continuous monitoring of exe-

cution quality and performance metrics. It verifies results

against specified requirements and constraints, implements

runtime validation of FM outputs, and ensures compliance

with security and privacy requirements. This comprehensive

quality control ensures reliable system operation.

Adaptive optimization. The infrastructure software

continuously learns and adapts its orchestration strategies

based on operational experience. It learns from previous ex-

ecution patterns to improve offloading decisions, adapts to



Ran D Z, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 146101:3

changing resource availability and system conditions, and

optimizes performance based on observed metrics and feed-

back. This adaptive mechanism ensures increasingly effi-

cient operation over time.

Developer interfaces. The infrastructure software pro-

vides intuitive interfaces for developers through high-level

abstractions for specifying computational requirements. It

offers tools for monitoring and controlling the offloading

process, application programming interfaces (APIs) for cus-

tomizing offloading strategies, and comprehensive debugging

and profiling capabilities for hybrid computations.

Through these eight key mechanisms, the infrastructure

software creates a seamless environment where computation

offloading becomes transparent to developers while main-

taining optimal performance and reliability. This orchestra-

tion layer abstracts away the complexity of managing hy-

brid computations, allowing developers to focus on their pri-

mary task of specifying desired behaviors and requirements.

The result is an efficient and accessible software develop-

ment process that leverages the strengths of both FMs and

symbolic programs while minimizing their respective limita-

tions.

Technical challenges. Realizing the vision of infrastruc-

ture software that bridges FMs and executable specifica-

tions needs to address the following six fundamental techni-

cal challenges, spanning multiple layers of the system stack

and requiring innovative solutions that combine insights

from machine learning, software engineering, and systems

research.

Semantic-gap resolution. One of the most fundamen-

tal challenges lies in bridging the semantic gap between FMs

and executable specifications. A key issue is the representa-

tion mismatch, as FMs operate on probabilistic, distributed

representations while executable specifications require pre-

cise, deterministic inputs. Developing reliable translation

mechanisms between these paradigms remains challenging.

Context preservation presents another significant hurdle, re-

quiring careful balance to ensure that essential context is

preserved when simplifying problems for FMs while main-

taining the precision required by executable specifications.

Additionally, maintaining semantic consistency across differ-

ent levels of abstraction and between different components

of the system poses further challenges.

Resource management and optimization. The het-

erogeneous nature of computation introduces challenges of

complex resource management. Dynamic resource alloca-

tion becomes critical for efficiently distributing computa-

tional resources between FM inference and symbolic execu-

tion based on changing workloads and requirements. Mem-

ory management must handle the diverse memory access

patterns and requirements of both FMs and executable spec-

ifications while maintaining system performance. Energy

efficiency considerations also come into play when optimiz-

ing the energy consumption of hybrid systems that combine

both FM inference and traditional computation.

Reliability and verification. Ensuring system relia-

bility presents unique challenges for such hybrid systems.

Developing solutions to verify the correctness of compu-

tations that combine probabilistic FM outputs with de-

terministic executable specifications remains a significant

challenge. Understanding and controlling error propagation

between FM outputs and executable specifications require

careful consideration. Efficient mechanisms of runtime ver-

ification that can handle both FM-based and specification-

based components add another layer of complexity to the

system design.

Performance and scalability. The scalability and

complexity of modern software systems introduce significant

performance challenges. It is crucial to minimize the latency

overhead of computation offloading and context switching

between FMs and executable specifications. The infrastruc-

ture software must scale effectively with increasing system

complexity and data volume. This scaling requires develop-

ing efficient caching and prediction mechanisms to reduce

unnecessary computation and data transfer while maintain-

ing system responsiveness.

Security and privacy. The integration of FMs with ex-

ecutable specifications within a system raises new security

concerns. Data protection becomes more complex as sen-

sitive information moves between different components of

the system. The increased attack surface that comes from

combining multiple computational paradigms requires care-

ful management. Privacy preservation mechanisms must be

developed to maintain confidentiality when processing sen-

sitive data through FMs.

Development and deployment. The practical aspects

of building and deploying hybrid FM-specification systems

face multiple challenges. Creating effective tools and envi-

ronments that support the development of such systems re-

quires new techniques for software development. For exam-

ple, testing and debugging techniques must evolve to handle

systems that combine deterministic and probabilistic com-

ponents. Version control and management systems need to

adapt to handle the coordinated evolution of both FMs and

executable specifications.

Research directions. Tackling the preceding challenges

calls for multiple critical research directions for future re-

search efforts. The development of formal methods capa-

ble of reasoning about hybrid FM-specification systems rep-

resents a crucial area of investigation. New programming

models that naturally support computation offloading need

to be created. Automated optimization techniques for re-

source allocation and performance tuning require further re-

search. Verification frameworks that can handle both prob-

abilistic and deterministic components must be designed.

Research into human-artificial-intelligence interaction pat-

terns for software development in this new paradigm is also

essential for realizing the full potential of these systems.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant Nos. 62161146003,
623B2006, 92464301) and Israel Science Foundation (ISF)
(Grant No. 3698/21).

References
1 Bommasani R, Hudson D A, Adeli E, et al. On the

opportunities and risks of foundation models. 2021.
ArXiv:2108.07258

2 Ran D, Wu M, Yang W, et al. Foundation model engi-
neering: engineering foundation models just as engineering
software. 2024. ArXiv:2407.08176

3 Harel D, Gery E. Executable object modeling with state-
charts. Computer, 1997, 30: 31–42

4 Harel D, Marron A, Rosenfeld A, et al. Labor division with
movable walls: composing executable specifications with
machine learning and search. In: Proceedings of the AAAI
Conference on Artificial Intelligence, 2019. 9770–9774

5 Harel D, Yerushalmi R, Marron A, et al. Categorizing
methods for integrating machine learning with executable
specifications. Sci China Inf Sci, 2024, 67: 111101

6 Satyanarayanan M, Bahl P, Caceres R, et al. The case for
VM-based cloudlets in mobile computing. IEEE Pervasive
Comput, 2009, 8: 14–23

7 Packer C, Fang V, Patil S G, et al. MemGPT: towards
LLMs as operating systems. 2023. ArXiv:2310.08560

8 Ran D, Wang H, Song Z, et al. Guardian: a runtime frame-
work for LLM-based UI exploration. In: Proceedings of the
33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2024. 958–970

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2407.08176
https://doi.org/10.1109/2.596624
https://doi.org/10.1007/s11432-022-3826-6
https://doi.org/10.1109/MPRV.2009.82
https://arxiv.org/abs/2310.08560

