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By treating data and models as source code, Foundation Models (FMs) become a new type of software. Mirroring
the concept of software crisis, the increasing complexity of FMs makes FM crisis a tangible concern in the
coming decade, appealing for new theories and methodologies from the field of software engineering. In
this article, we outline our vision of introducing FM engineering, a strategic response to the anticipated FM
crisis with principled engineering methodologies. FM engineering aims to mitigate potential issues in FM
development and application through the introduction of declarative, automated, and unified programming
interfaces for both data and model management, reducing the complexities involved in working with FMs by
providing a more structured and intuitive process for developers. Through the establishment of FM engineering,
we aim to provide a robust, automated, and extensible framework that addresses the imminent challenges,
and discover new research opportunities for the software engineering field.
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1 Overview, Motivation, and Aims

Foundation Models [5] (in short as FMs) are becoming a new type of software. An analogy between
traditional software and FMs is depicted in Figure 1, highlighting the parallel roles of their core
components. In FM development, data and models play a critical role akin to source code in
conventional software development. Developers curate datasets, such as sets of example input-
output pairs, to articulate the specifications for the desired FM. They then choose an appropriate
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Fig. 1. An analogy between the development of traditional software and foundation models. In traditional
software development, source code is manually written by human developers. The source code (e.g., cpp files)
is compiled into an executable binary to perform specific tasks. In foundation model development, “source
code” typically consists of two main components: 1) the dataset, which outlines the desired behavior, and 2)
the neural network architecture, which provides a basic structure for the model, although many specifications
(such as the weights) remain to be determined. Through the training process, the dataset is “compiled” into
the final foundation model, which is similar to the compiled binary of traditional software.

network architecture and employ model training techniques such as backpropagation [64] to
effectively “compile” the dataset and network architecture into the targeted FM.

Given the analogy between FMs and traditional software coupled with the increasing complexity
of FM development (depicted in Figure 2), we envision that an FM crisis, mirroring the concept of
the software crisis [11], will surface as a tangible concern over the coming decade. This potential
crisis can be evidenced across four major aspects:

e Increasing FM complexity. Since the invention of Transformer [72], the complexity of FMs
(represented by the number of parameters) has been increasing at an exponential rate. This
growing complexity raises significant challenges not only in training and managing these
FMs but also in managing the datasets that underpin them. Specifically, as datasets grow in
size to unprecedented levels, the tasks of cleaning, labeling, and managing data at such a
scale become increasingly challenging.

e Continuous FM evolution. FMs are in a state of continuous and fast evolution, driven by the
integration of new data, the emergence of new requirements, and the implementation of bug
fixes. For example, the average time between updates for OpenAI’s models is 2 weeks [53],
more frequent than that of Linux, whose mainline kernels are updated every 9-10 weeks [40].
Beyond the updates to the base FM, developers often finetune these models within their
specific application domains. When the base FM updates, particularly security-related fixes,
it necessitates a corresponding update to the finetuned FMs. It is challenging to efficiently
and cost-effectively manage the evolution of these finetuned FMs, catching up with the base
model updates while maintaining their domain-specific enhancements.
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Fig. 2. Diverse customization demand. The staggering array of models, datasets, and Al applications available
on Hugging Face [16], featuring 254,871 models with the Transformer architecture, 127,462 datasets, and over
170,000 Al app demos, vividly illustrates the diverse customization demand of FMs.

¢ Diverse customization demand. The era of FMs is characterized not only by their techno-

logical advancements but also by the broad spectrum of customization demands. On Hugging
Face [16], there are 254,871 models with the Transformer architecture, 127,462 datasets, and
over 170,000 Al app demos across various application domains. This diverse ecosystem of
models, datasets, and applications is a clear indication that the future of FMs lies in their abil-
ity to be customized. During the customization, ensuring data privacy, model interpretability,
and bias elimination requires innovations of data management and model management.
Multi-stakeholder collaboration. The development of FMs involves multi-stakeholder
collaboration among data scientists, model developers, and application domain experts.
This collaboration introduces significant hurdles, primarily due to differing objectives, ter-
minologies, and methodologies across disciplines. The specialized language used by data
scientists and engineers may not align with the domain-specific knowledge and practical
insights of application domain experts, potentially leading to misunderstandings and delays
in project timelines. Innovative techniques are needed for minimizing the barriers posed by
interdisciplinary work and fostering effective collaboration.

Inspired by the role that software engineering has played in addressing the software crisis [11],
this article outlines our vision of FM engineering (depicted in Figure 3), a strategic response to the
anticipated FM crisis. FM engineering aims to mitigate potential issues in FM development and
application through the introduction of declarative, automated, and unified programming interfaces
for both data and model management, reducing the complexities involved in working with FMs by
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providing a more structured and intuitive process for developers. These are three key components
of our proposed FM engineering:

e Data management with weak supervision. Recognizing the importance of high-quality
data in training effective FMs, we advocate for advanced data management strategies that
leverage weak supervision. This approach allows for the efficient labeling and curating of
vast datasets by combining limited amounts of labeled data with large quantities of unlabeled
data, using algorithms to infer labels and improve data quality. This approach significantly
reduces the time and resources required for data preparation.

¢ Model management with workflows and continuous integration. Effective model
management is essential for the scalable and sustainable development of FMs. We envision
the implementation of workflows that encompass model development, training, evaluation,
and deployment processes, automating routine tasks and ensuring optimal practices. We
also envision a distributed version control system like Git [43] to track the update of FMs,
manage model branches, and resolve conflicts of model updates.

e Programmatic FM development with declarative specifications. To further simplify
the engineering of FMs, we envision unified and declarative APIs that abstract away the
underlying complexities of model and data management. These APIs allow developers to
specify what they want to achieve in a high-level language, without needing to provide
detailed instructions on how to accomplish these tasks. This way not only makes the process
more accessible to a wider range of users, including those with less technical expertise but
also accelerates the development cycle by enabling quicker iterations and refinements of
models.

Through the establishment of FM engineering as envisioned in this article, we aim to provide a
robust, automated, and extensible framework that addresses the imminent challenges and opportu-
nities presented by the rapid advancement of FMs. By equipping developers with the tools and
methodologies to effectively and efficiently manage data and models, we can enhance productivity
and responsible use of these powerful FMs, and discover research opportunities for the software
engineering community in the FM era. In summary, our aims are as follows:

e envision FM engineering for resolving the potential “FM crisis” in the next decade;

e architect FM engineering in terms of data management, model management, and declarative
programming interfaces;

e research on tools, techniques, and methodologies for improving and automating FM engi-
neering.

2 Envision of FM Engineering
2.1 Overview of FM Engineering

Figure 3 presents the overview of the envisioned Foundation Model Engineering (in short as FME),
which manages resources, abstracts common operations, and provides APIs for related developers
to engineer data and model in declarative ways.

Data management. In the landscape of FME, data management emerges as a key element. The
ease with which machines generate massive volumes of data presents a unique challenge, especially
in ensuring full coverage across enormous public or private information sources where collection
complexities multiply. The criticality of data relevance cannot be overstated; amidst the deluge,
distinguishing valuable data for analysis and decision-making becomes crucial. Moreover, the effort
to process and refine this raw data into a form that is both accessible and actionable is a formidable
task that FME tackles head-on.
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Fig. 3. Overview of Foundation Model Engineering.

At the core of FME’s strategy is the fundamental principle that acquiring the appropriate data
is critical to the success of the entire operation. It is widely recognized that simple models built
on well-curated datasets often surpass their complex counterparts that are fed skewed or incom-
plete data. An integral part of this approach includes rigorous auditing and inspection of data
pipelines, safeguarding data integrity and ensuring that processing aligns with predefined goals
and compliance requirements.

Once raw data is collected, the next phase involves transforming this data into meaningful signals
within FME. This transformation is a multi-step procedure that commences with data wrangling for
cleaning and structuring, followed by aggregation to distill summary insights. Anomaly detection
algorithms sift through to highlight irregularities, while pattern matching and linear regression
inform on current trends and future directions. The process reaches its end with the deployment of
advanced machine learning models that extract complex patterns and forecasts, thereby deepening
the comprehension of the data’s story.

FME maintains the data assets for model training and finetuning. Data developers can declare data
labelling and cleaning functions with high-level intention descriptions and weak supervision, such
as specifying exemplar data-label pairs. FME takes the schema as input, selects an appropriate model
for parsing and understanding the schema (typically a code generation model or SQL generation
model), and generates data labeling or cleaning functions to perform the data labelling or cleaning

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2025.



6 Dezhi Ran, Mengzhou Wu, Wei Yang, and Tao Xie

at scale. In addition to data labeling, FME also implements access control to data assets to assure
that the data access conforms to legal policies as well as user intentions.

Model management. FME champions a novel paradigm for machine learning, paralleling the
collaborative dynamism of open-source software development. This initiative seeks to transform the
lifecycle of FMs from static entities to evolving constructs, continuously refined through community
contributions. Unlike traditional open-source software, which thrives on collective inputs and
evolution, FMs often see their development halt post-release. To bridge this gap, FME is cultivating
a culture where machine learning models are not just released but are actively developed, enhanced,
and adapted through collaborative efforts.

Central to this culture shift is the strategic facilitation of efficient change communication and
contribution integration, steering clear of the impracticalities of transferring voluminous parameters
(a characteristic of contemporary models). Leveraging insights like Fisher information [45], FME
focuses on pinpointing and updating specific subsets of parameters. This targeted approach enables
substantial performance enhancements without the heft of large-scale data transfers.

In the spirit of collaborative software engineering, the exploration of merging contributions
from disparate sources stands as a testament to the power of collective intelligence. By integrating
the diverse expertise of independently crafted models, FME paves the way for new capabilities and
amplified performance in specialized tasks.

The push toward modularity in machine learning is informed by the “mixture of experts” architec-
tural paradigm [14, 50, 78, 80], where specialized sub-networks synergize through adaptive routing,
facilitating the backpropagation of discrete choices. Such an arrangement empowers models to
assimilate domain-specific knowledge with unprecedented efficiency.

Lastly, to facilitate the version control and integration of updates, the concept of git for models is
being developed [32]. This system aims to track parameter updates, support efficient merging, and
integrate seamlessly with existing workflows, marking a significant step toward a more collaborative
machine learning ecosystem.

FME also automates the model finetuning process, where developers specify tasks and declare
accessible data assets. The system intelligently selects suitable models, identifies finetuning data
from the available pool, and executes finetuning with auto-adjusted hyperparameters. Upon com-
pletion, FME merges the redundant models, resolves conflicts during merging, and returns the
merged model for subsequent usage.

2.2 Data Management

As shown in Figure 4, we envision an integrated environment and declarative interfaces that
support data management with minimal human efforts. Data is the user interface to “program”
FMs, and a user-friendly interface is expected to fulfill four major requirements. First, FMs are
trained on vast datasets, comprising billions of words and documents from the Internet, books,
articles, and more. The quality, diversity, and size of the training data directly affect FMs’ ability to
understand and perform tasks ranging from dialog systems to code generation. Second, labeled
data are required to adapt FMs to specific downstream tasks or non-functional properties such as
human preference alignment [54]. Third, data sourcing, access control, and unlearning are crucial
for data management to conform to legal policies and user-privacy requirements. Finally, the goal
is to fulfill the preceding requirements in an automated streamline with minimal human efforts. To
fulfill the preceding requirements, we envision that the data management of FME consists of the
following four modules.

Data cleaning. The data cleaning module, critical in ensuring data integrity and quality for FMs,
embraces a high-level, declarative framework. Within this framework, users specify the desired
characteristics of clean data, guiding the module to automatically pinpoint and rectify inaccuracies,
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Fig. 4. Overview of Data Management.

inconsistencies, and redundancies in the datasets according to these specifications. The module is
enriched with an interactive feedback loop. This crucial feature allows users to review and validate
the automated cleaning actions undertaken by the system, facilitating an iterative refinement
process. Through this dynamic interaction, users can fine-tune the cleaning criteria, ensuring that
they resonate with the unique aspects of the data and their specific needs. By employing automated
tools and algorithms, this module can detect anomalies, filter out irrelevant or sensitive information,
and standardize data formats. This step is crucial for reducing noise in the training data, thereby
enhancing FM’s learning efficiency and effectiveness in understanding complex language patterns
and generating coherent outputs.

Data labelling. Data labelling focuses on annotating the training data with informative tags
or labels that define the context or the desired outcome of the data. This module is particularly
important for supervised learning tasks where the FM needs to recognize patterns or generate
responses based on specific inputs. Leveraging automated strategies of data labelling with human
specifications establishes high-level rules or heuristics, facilitating the automatic creation of labels
over large datasets. This approach is strengthened by incorporating specialized knowledge through
labeling functions and using weak supervision techniques to utilize a broad range of information
sources for deducing labels. In addition, the module iteratively enhances label accuracy by leveraging
model-driven insights to rectify initial ambiguities or errors introduced by heuristic rules or noisy
labels. This module enables the customization of FMs for specialized applications, from sentiment
analysis to personalized content creation, by aligning the resulting model’s outputs with human
preferences and task-specific requirements.

Access control. Data sourcing must comply with copyright laws, privacy regulations, and ethical
standards. The use of publicly available data, proprietary datasets, and user-generated content
requires careful examination. Access control mechanisms are implemented to manage who can view
or use the data, ensuring that only authorized users or systems have the ability to access or modify
the datasets. By incorporating robust authentication, authorization, and auditing processes, the
access control module safeguards sensitive information and prevents unauthorized data breaches,
thereby fostering trust in FMs’ development and deployment processes.
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Fig. 5. Overview of Model Management.

Weak supervision. The weak supervision module aims to reduce the reliance on extensively labeled
datasets by utilizing less-precise labels that can be generated more easily or derived from heuristic
rules and external knowledge sources. This approach allows for the rapid scaling of training data
while managing resource constraints and minimizing manual labelling efforts. Through advanced
algorithms and models that can learn from weakly supervised data, this module supports the
efficient training of FMs across a broader range of tasks and domains, accelerating the resulting
model’s adaptability and performance improvement.

2.3 Model Management

As shown in Figure 5, we develop an integrated environment and distributed version control system
that supports the development, evolution and deployment of FMs.

Nowadays, model updates rarely start from retraining from scratch but instead involve incremen-
tal fine-tuning where only a small fraction of parameters are changed. Considering that different
applications may finetune their own FMs from the same pretrianed FM, maintaining separate
FMs for different applications encounters similar problems as code-cloning problems common
in traditional software engineering, reducing software reliability and maintainability. Given that
different users have different fine-tuning data, leading to different or even conflicting parameter
updates, maintaining these FMs can be challenging for developers to manually check and update
the FMs.

Inspired by Git [43], we envision a distributed version control system of FMs (shown in Figure 6),
providing platform support for the community-driven development, evolution, and continuous
integration of FMs. The system offers a unified abstraction of software development and version
management for both new applications and the supporting platform.

Model selection. The model selection module empowers users to identify the most suitable FMs
for their specific applications based on performance benchmarks, compatibility, and previous
usage outcomes. For example, the Composition of Experts (CoE) [65] is used in model selection to
aggregate multiple specialized models to improve overall performance and accuracy. For example, in
a CoE system, there could be distinct expert models in language understanding, image recognition,
and sentiment analysis. When faced with a complex task that involves understanding text within
images and gauging sentiment, the CoE system would select and combine the outputs of these expert
models. This modular approach allows for targeted fine-tuning of each expert model, ensuring that
the collective output is both accurate and efficient in handling the task at hand.

Model finetuning. The model finetuning module offers a flexible and user-friendly toolkit for
customizing FMs to meet the unique demands of diverse applications. It simplifies the process of
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applying incremental updates, adjusting parameters, and integrating new data, thereby enabling
personalized model optimization without the need for extensive machine learning expertise. The
finetuning module provides an intuitive toolkit, enabling users to tailor FMs for diverse needs with
ease. It supports collaborative, large-scale, distributed learning environments, where contributors
work on separate data without sharing, ensuring data privacy and ownership while optimizing
model performance through a central minimal-computation repository. This distributed setup allows
for parallel training tasks on shared servers, maintaining parameter ownership and preventing task
interference, streamlining the path to personalized model optimization.

Model merging. The process of model merging after finetuning involves a collaborative and
incremental approach, similar to practices in open-source software development. Addressing the
challenges of divergent fine-tuning efforts, the model merging module incorporates sophisticated
algorithms to harmonize changes from multiple sources. This approach allows for efficient commu-
nication of updates between contributors and a central repository, focusing on updating only a
selected subset of parameters based on their significance, as determined by measures like Fischer
information [45, 68]. This approach ensures that updates are manageable in size, reducing com-
munication costs and complexity. The ultimate goal is to combine the strengths of independently
trained models, preserving the benefits of each model, and to enhance the overall performance and
capabilities of the merged model in a distributed and collaborative learning environment. Achiev-
ing this goal ensures consistency, mitigates conflicts, and maintains the integrity of FMs across
different applications, significantly reducing the maintenance burden and promoting collaborative
improvements.

Model deployment. The model deployment module streamlines the process of rolling out updated
or newly finetuned FMs into production environments. The deployment process begins with user
requests, which are systematically queued. These requests are then managed by a deployment
setup, often running on a Kubernetes environment, where an FM is loaded into memory within
containers organized into pods. Within this deployment, there are two primary types of model
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weights: the base model weights, which form the core parameters of the FM, and adapter weights,
which are a smaller set of parameters that allow for model fine-tuning.

One of the central challenges in deploying fine-tuned FMs is the significant resource requirements,
particularly in terms of GPU usage. Each new user or task traditionally necessitates a new pod
and GPU, leading to potentially excessive resource consumption. However, a crucial insight is that
most of the model weights across different deployments remain identical, with variations primarily
in the adapter weights. This realization opens up possibilities for sharing the base model across
multiple adapters, thereby optimizing resource use.

Addressing this challenge, we envision a system with three innovative techniques. First, it
employs dynamic loading of adapter weights, allowing the system to serve multiple user requests
by loading only the necessary adapter weights alongside the base model weights into memory.
This technique significantly reduces the need for additional resources per user or task. Second, the
system incorporates a multi-tier weight cache to manage adapter weights efficiently. This cache
includes a GPU cache for actively used adapters, a CPU cache for adapters awaiting activation, and
an idle tier for adapters not currently in use, with their weights stored on ephemeral disk storage
for potential future requests.

Finally, another key innovative technique that we can adopt here is continuous multi-adapter
batching, an extension of the continuous batching concept [59]. This technique allows the system
to process requests from multiple adapters together in the same batch, significantly improving
throughput and efficiency. The batching algorithm central to this system prioritizes adapters based
on request timestamps and employs a cycle-time parameter to manage the swapping of adapters in
and out of the active set, striking a balance between throughput and latency. The model deploy-
ment module ensures smooth transition, minimizes downtime, and facilitates continuous delivery,
allowing developers and users to leverage the latest advancements with ease and confidence.

Together, these techniques underlie a comprehensive ecosystem that not only simplifies the
management of FMs but also accelerates the pace of innovation, fostering a collaborative and
dynamic environment for the advancement of intelligent applications.

3 State of the Practice
3.1 Application Scenarios for Foundation Models

Foundation Models (FMs) are increasingly being deployed across a wide range of application
scenarios [5]. In natural language processing [6], FMs power advanced conversational agents [52],
text summarization tools [55, 71], and translation systems [4, 17]. In the field of computer vision,
FMs are applied to tasks like object detection [61, 77], image classification [13, 23], and even complex
activities like medical image analysis [84]. Moreover, FMs are finding applications in industries
such as finance [85], where FMs are used for risk assessment [21] and predictive modeling [73],
and in healthcare, where they contribute to personalized medical assistance [1, 82] and drug
discovery [2, 31]. Each application scenario presents unique requirements and challenges, which
must be carefully considered during the FM development process to ensure that the models are
tailored to meet specific needs effectively.

3.2 Data-Centric Machine Learning

Kaplan et al. [33] reveal that improving model architectures usually offers limited benefits. In con-
trast, the efficacy of data utilization is becoming the cornerstone of advancing model performance
given the increasing dataset scale enabled by self-supervised learning techniques [10, 60].

Data cleaning. Data cleaning involves addressing errors, duplications, and incompleteness in
datasets by modifying, adding, or deleting data. Holoclean [63] utilizes a variety of techniques
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including heuristic rules (such as integrity constraints), external knowledge, and quantitative
statistics to integrate multiple data sources into a probabilistic model, identifying and correcting
errors in datasets. Picket [42] employs self-supervised deep learning models to identify and remove
corrupted data without the need for human supervision. Neutatz et al. [51] find that the benefits of
data cleaning largely depend on the application, leading to the proposal of end-to-end, application-
driven, holistic data cleaning approaches. ActiveClean [36] combines data cleaning with active
learning, prioritizing the cleaning of data that could potentially impact model performance in
specific application domains.

Data programming with weak supervision. The need for large labeled datasets to optimally
train modern machine learning models presents a major bottleneck, due to the high costs and time
needed for expert manual annotation. In response, active learning strategies [66] streamline this
process by selectively engaging experts to label data of maximal utility—such as instances at the
fringes of classification models—thereby amplifying model efficacy with diminished input. Parallelly,
semi-supervised learning [70] capitalizes on a modest quantity of labeled data supplemented by
unlabeled data to enhance model accuracy, effectively economizing on the need for extensive
labeled datasets. Weak supervision approaches harness cost-effective techniques for gathering
lower-quality labeled data through avenues like Crowdsourcing [34], Distant Supervision [49],
or heuristic rules, markedly alleviating the reliance on manual labeling. The Snorkel system [62]
enables users to employ labeling functions that encapsulate heuristic techniques, and combines
different weak supervision sources to generate a probabilistic distribution of labels.

3.3 Incremental Model Training

Parameter-Efficient Fine-Tuning (PEFT). The extensive parameter set of FMs renders their
fine-tuning both computationally expensive and storage-intensive. PEFT approaches [46] offer a
solution by fine-tuning a fraction of their parameters. The compact nature of specialized PEFT
modules facilitates their dissemination within the community, as evidenced by the availability of
over 20,000 adapters on the Hugging Face Model Hub, all of which are based on PEFT.

PEFT approaches are predominantly categorized into three distinct types. First, additive ap-
proaches entail the integration of additional parameters into the original FM architecture, with
the fine-tuning process focusing exclusively on these new parameters. Notably, Houlsby et al. [26]
introduce fully-connected networks as adapter modules within the transformer architecture, after
the attention and Feed-Forward Network (FFN) layers. Prompt tuning [37] and prefix tuning [38] in-
corporate task-specific vector sequences at the input layer and throughout various layers of the FM,
respectively, with fine-tuning achieved through the adjustment of these vector parameters. Second,
selective approaches involve the selective training of a subset of the FM’s parameters. BitFit [79]
fine-tunes only the bias parameters, while DiffPruning [20] employs an LO-norm to train a sparse
weight matrix. Freeze and Reconfigure [75] and FishMask [68] identify and train crucial model pa-
rameters based on L1-distance and Fisher information, respectively. Third, reparametrization-based
approaches modify the original model’s parameter matrix into a more tractable low-rank format for
training purposes. Intrinsic SAID [3] utilizes the FastFood transform for reparameterizing model
weight updates. LoRA [27] decomposes the weight matrix updates into products of low-rank matri-
ces, with KronA [15] employing Kronecker product for matrix factorization. AdaLoRA [83] adopts
Singular Value Decomposition (SVD) for parameter matrix decomposition, prioritizing resources
based on the significance of different weight matrices. Additionally, innovative integrations such
as SparseAdapter [24], MAM Adapters [22], UniPELT [47], Compacter [35], and S4 [7] amalgamate
various PEFT approaches to enhance efficiency and adaptability.

Modular training for multi-task learning. Ilharco et al. [29] introduce the concept of a task
vector to delineate the shifts within the model’s parameter space consequent to fine-tuning for a
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specific task. Ilharco et al. [29] further elucidate that performing arithmetic operations on this task
vector facilitates the processes of forgetting, constructing multi-task models, and task analogies. In
the quest to refine model merging capabilities by leveraging the task vector, Matena and Raffel
[48] apply Fisher information weighting, and Jin et al. [30] frame the challenge as an optimization
quandary and resolve it via linear regression, while Yadav et al. [76] mitigate interference by
eliminating superfluous parameters and reconciling symbol discrepancies. Choshen et al. 8] and
Don-Yehiya et al. [12] engage in iterative fine-tuning of the FM across diverse tasks, subsequently
averaging the weights to enhance the FM. Further, an amalgamation of PEFT approaches with
model merging strategies is explored [9, 28, 44, 56, 58, 81]. Ponti et al. [58] posit that each task is
linked to a spectrum of skills, with each skill mirrored by an adapter, and devise a routing function
to allocate skills per task. AdapterSoup [9] employs task textual similarity and clustering techniques
to identify auxiliary tasks conducive to the target task, facilitating the merger of pertinent adapters.
LoRAHub [28] adopts a gradient-free optimization strategy to fine-tune LoRA model merging,
guided by few-shot examples of the target task.

A noteworthy trend in recent research [14, 50, 78, 80] is the development of mixture-of-experts
models to tackle the multi-task conundrum. Within such models, a selective activation of a subset of
experts is triggered at each layer contingent on the input, thereby focusing inference and training
efforts solely on the activated experts. This approach has been shown to yield superior performance,
particularly when models are extended to tasks beyond their initial training scope.

4 Research Opportunities

To fulfill our vision of Foundation Model (FM) engineering, numerous research opportunities arise
in three major categories, including declarative FM engineering, fine-grained data management,
and automating model management.

4.1 Declarative FM Engineering

Declarative FM engineering represents a paradigm shift in the development of Large Language
Models, emphasizing the specification of what a model should achieve rather than how it achieves
the specification. This approach, rooted in the principles of declarative programming, offers a more
intuitive and efficient methodology for designing, training, and deploying FMs. It invites a wealth
of research opportunities aimed at simplifying the complex process of FM engineering, making it
more accessible and adaptable to a broader range of applications and developers.

FM requirements engineering. The requirements engineering of FMs plays a crucial role in
guiding FM development and deployment. First, in terms of data requirements engineering, it is
essential to identify and curate datasets that are not only large and diverse but also aligned with the
specific tasks that the FM is expected to perform. Second, model requirements engineering focuses
on defining the specifications and capabilities that the FM must possess to meet its intended use cases.
For example, in safety-critical applications, the model may need to meet stringent accuracy and
reliability standards, while in customer-facing applications, user experience factors like response
time and interpretability might be prioritized. Research on FM requirements engineering could
focus on creating methodologies and pipelines for an effective understanding of FM application
goals, and an efficient selection of FMs.

High-level model specification languages. For FM engineering, developing high-level, domain-
specific languages that allow developers to specify the desired outcomes, constraints, and behaviors
of the model in an abstract manner. Research in this area could focus on creating intuitive syntax and
semantics that encapsulate the complexities of neural network architectures, training procedures,
and data processing pipelines.
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Automated model synthesis. Building on high-level specifications, automated model synthesis
involves research into algorithms and systems capable of translating these abstract descriptions into
concrete, optimized FM architectures. Such systems include selecting appropriate neural network
components, configuring layers and connections, and determining optimal training strategies based
on the specified objectives and constraints.

Constraint-based optimization. Constraint-based optimization investigating techniques for
incorporating various types of constraints (e.g., performance, fairness, privacy) directly into the FM
training process in a declarative manner. This research area would explore optimization techniques
that can balance multiple objectives and adhere to specified constraints, ensuring that the resulting
models align with ethical guidelines and application-specific requirements.

Resource-aware engineering. The development of FMs significantly differs from traditional
software development due to the substantial infrastructure requirements, particularly in terms
of computational resources. Training and fine-tuning FMs necessitate large-scale computational
power, often involving clusters of GPUs or NPUs/TPUs to handle the extensive data and complex
calculations required [25, 69]. This disparity not only creates a barrier to entry for smaller entities
but also limits the diversity of contributors to the FM development process, potentially leading to
biases in the models due to a lack of varied perspectives.

The infrastructure challenges in FM development open up significant research opportunities

aimed at democratizing access to these resources. One research direction is the exploration of
more efficient model training techniques, such as model pruning [41, 86], quantization [57], and
knowledge distillation [19, 57], which can reduce the computational burden without compromising
model performance. Another research direction is the development of distributed and collaborative
training frameworks [39] that allow multiple smaller entities to pool their computational resources,
making FM development more accessible.
Verification and validation. Given the abstract nature of declarative specifications, developing
robust verification and validation techniques is crucial to ensure that the synthesized FMs faithfully
represent the intended outcomes and adhere to all specified constraints. These techniques include
formal verification techniques to prove the properties of the models and empirical validation
techniques to evaluate their performance and behavior in real-world scenarios.

4.2 Fine-grained Data Management

Granular permissions. Developing systems that enable granular control over who can access
specific datasets or parts of datasets is crucial. Such control includes defining roles and permissions
at a detailed level, and allowing for precise management of data access based on the user’s role, the
nature of the project, and the sensitivity of the data. Research into models that can dynamically
adjust permissions in response to changing project needs or data sensitivity levels could significantly
enhance data security and governance.

Decentralized access control. With the rise of decentralized technologies, investigating decen-
tralized access control models, such as those based on blockchain, could offer new ways to manage
data assets securely and transparently. These models could provide immutable, verifiable logs of
data access and changes, enhancing trust and compliance.

Automated compliance checks. Given the complex web of data protection laws globally, devel-
oping automated systems for compliance checks during data access can help organizations navigate
legal requirements more efficiently. Research into Al-driven compliance advisors that can interpret
and apply legal rules in real-time during data access decisions could greatly reduce the burden of
legal compliance.

Secured data management. Given that FMs rely on vast amounts of data (for training and
fine-tuning), which may include sensitive information such as personally identifiable information
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(PII) and confidential business data, safeguarding this data throughout its lifecycle is critical. To
achieve the safeguarding, multi-layered access control mechanisms can be implemented to restrict
unauthorized access and ensure that data remains encrypted during transmission between users
and systems. Additionally, automated compliance check systems can monitor data access and
processing in real-time, ensuring that all operations adhere to relevant legal regulations, such as
GDPR [74]. Weak supervision techniques can also reduce the need for manual intervention in
data labeling by leveraging broader information sources to automatically generate labels, thus
enhancing data utilization efficiency while maintaining data privacy and security [5, 62].

4.3 Automating Model Management

Continuous evolution of FMs. The need to evolve FMs parallels the dynamic nature of open-
source software development, emphasizing the critical requirement for robust infrastructure support
for incremental, collaborative, and agile enhancement of FMs. FMs, much like any sophisticated
software, may require updates for a variety of critical reasons: enhancing their performance
through extended training or alternative data, rectifying problematic outputs such as noise or
offensive content, and addressing privacy concerns related to memorized data. However, the
current practice largely involves models remaining static post-release, awaiting replacement by
a completely new version, rather than undergoing continuous refinement. This current practice
contrasts with the evolutionary trajectory of open-source projects, like popular programming
languages such as Python or Java. If these languages had remained unchanged since their initial
release, they would lack many now-essential features and fixes that have been contributed by a
diverse community of developers. These enhancements, often seamlessly integrated into existing
codebases, are facilitated by a well-established ecosystem of development tools and practices,
including version control, continuous integration, and package management. Adopting a similar
framework for the development of FMs would not only enable their continual improvement but also
ensure their relevance and utility in an ever-evolving technological landscape. Such a framework
necessitates the establishment of standardized protocols for model updates, a transparent versioning
system to manage changes, and comprehensive guidelines for adapting existing applications to
updated models.
Version control systems of FMs. The success of the Linux operating system ecosystem can
be largely attributed to its extensive array of both built-in and externally contributed libraries.
Managing these libraries effectively (including their installation, removal, and dependency resolu-
tion), along with tracking developmental progress through version control, has been crucial to the
success. Git, a distributed version control system that emerged from the Linux ecosystem, has been
instrumental in fostering collaborative and parallel development, significantly accelerating the
ecosystem’s growth and evolution. While Git excels at managing code through line-level change
tracking during operations like merging and rebasing, it faces new challenges when applied to
natural language contents. Unlike source code, which follows strict syntactic rules, natural lan-
guage expressions can vary significantly while maintaining semantic equivalence. For example,
multiple developers might express the same concept using different phrasings, making it difficult to
apply traditional version control approaches that focus on textual differences rather than semantic
meaning. This challenge becomes particularly relevant as we see increased development of Al
agents using natural language specifications. Traditional version control systems need to evolve to
better handle these variations in natural language expressions while maintaining their ability to
track and manage changes effectively.

Deployment security. Security of FMs is equally crucial, especially when they are deployed in
critical tasks or handle sensitive information. Model security can be ensured through several mea-
sures, including access control and version control. Using distributed version control systems like

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2025.



Foundation Model Engineering: Engineering Foundation Models Just as Engineering Software 15

Git can effectively track model updates and changes, preventing unauthorized modifications [32].
Additionally, model security involves defending against adversarial attacks, which may manipulate
a model’s output by feeding it malicious input. To achieve model security, adversarial training
and model validation techniques can be incorporated to enhance the model’s resilience against
such attacks [18]. Finally, regular security audits and performance evaluations of models help in
identifying and addressing potential vulnerabilities, ensuring that the models remain secure and
reliable as they evolve and are applied in various contexts [67].

5 Conclusion

In this article, we have envisioned foundation model (FM) engineering, aiming to streamline the
development of FMs through innovative infrastructure software and methodologies. By simplifying
data and model management while emphasizing automated, declarative interfaces, we envision
a future where FMs are more accessible, efficient, and ethically developed. This approach not
only promises to accelerate innovation in the machine learning field but also ensures that the
profound benefits of FMs can be leveraged across various sectors, contributing positively to societal
advancement. Moving forward, collaborative and conscientious efforts will be key to realizing the
full potential of these technologies in a responsible and beneficial manner.
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